Supporting Information for

Tuning Central Fused Ring and Terminal Units to Improve Photovoltaic Performance for the Ar(A-D)₂ Type Small Molecules in Solution-Processed Organic Solar Cells

Jianhua Chen,^{*a*,1} Linrui Duan,^{*a*,1} Manjun Xiao, ^{*a*} Qiong Wang, ^{*a*} Bin Liu, ^{*a*} Hao Xia,^{*a*} Renqiang Yang,^{*,*b*} Weiguo Zhu^{*,*a*,b}

Contents

- 1. Experiment part.
- 2. TGA curves of DPP₂Py, ThDPP₂Py and TPADPP₂Py.
- 3. Photovoltaic properties of the DPP₂Py/PC₇₁BM-based OPV cells.
- 4. Photovoltaic properties of the ThDPP₂Py/PC₇₁BM-based OPV cells.
- 5. Photovoltaic properties of the TPADPP₂Py/PC₇₁BM-based OPV cells.
- The comparison of the photovoltaic performance of DPP₂Py, ThDPP₂Py, TPADPP₂Py and other reported DPP₂Ar analogies.
- The film morphologies of SMs/PC₇₁BM-based OPV cells under optimized conditions.
- 8. NMR and MS spectra of DPP₂Py, ThDPP₂Py and TPADPP₂Py

1. Experiment part.

1.1 Synthesis of DPP₂Py

Compound Py(BPin)₂ (45.4 mg, 0.1 mmol), compound DPP-Br (132.9 mg, 0.22 mmol), 2.0 M K₂CO₃ aqueous solution (1.0 mL), methanol (1.0 mL), and toluene (5.0 mL) were mixed together in a 25 mL two-neck flask and purged with nitrogen flow for 20 min. To this solution was added tetrakis(triphenylphosphine)palladium (10 mg). The reaction mixture was heated to 80 °C and refluxed for 12 h. Then allowed mixture to cool to room temperature and extracted with CH₂Cl₂ (25 mL × 3). The resulting organic layer was washed with brine, dried over anhydrous MgSO₄ and evaporated to remove off solvent under vacuum. The residue was purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (2:1, ν/ν) as eluent to provide a dark blue powder (106.4 mg, 85.3%). ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 8.95 (d, *J* = 2.8 Hz, 2H), 8.89 (s, 2H), 8.19 (s, 4H), 8.00 (s, 4H), 7.59 (d, *J* = 2.4 Hz, 2H), 7.54 (d, *J* = 4.2 Hz, 2H), 7.21 (s, 2H), 4.05 (d, *J* = 31.7 Hz, 8H), 1.91 (d, *J* = 26.7 Hz, 4H), 1.52-1.12 (m, 32H), 1.03-0.76 (m, 24H). MALDI-MS (m/z) of C₇₆H₈₆N₄O₄S₄: calcd. C, 73.15; H, 6.95; N, 4.49; found C, 73.09; H, 7.98; N, 4.46.

1.2 Synthesis of **DPP-Th**

Under the protection of argon, to a solution of DPP-Br (1.21 g, 2 mmol) and Th-Sn (1.07 g, 2.2 mmol) in 50 mL toluene was added tetrakis(triphenylphosphine) palladium (115.6 mg, 0.1 mmol). The reaction mixture was heated to 110 °C and refluxed for 16 h. Then allowed mixture to cool to room temperature and extracted with CH_2Cl_2 (50 mL × 3). The resulting organic layer was washed with brine, dried over anhydrous MgSO₄ and evaporated to remove off solvent under vacuum. The residue was purified by column chromatography on silica gel using CH_2Cl_2 /petroleum ether (1:1, v/v) as eluent to provide a purple powder (1.21 g, 84.6%). ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 4.1 Hz, 1H), 8.80 (d, J = 3.5 Hz, 1H), 7.55 (d, J = 4.8 Hz,

1H), 7.21 (d, J = 4.8 Hz, 1H), 7.18 (d, J = 4.8 Hz, 1H), 7.18 (d, J = 4.1 Hz, 1H), 7.08 (d, J = 3.5 Hz, 1H), 6.68 (d, J = 3.4 Hz, 1H), 4.07 – 3.87 (m, 4H), 2.76 (t, J = 7.5 Hz, 2H), 1.91 – 1.72 (m, 2H), 1.63 (dd, J = 14.6, 7.3 Hz, 2H), 1.41 – 1.08 (m, 26H), 0.90 – 0.71 (m, 15H). ¹³C NMR (101 MHz, CDCl₃) δ 161.86, 161.59, 147.88, 143.69,140.34, 139.53, 137.04, 134.98, 133.60, 130.20, 130.01, 128.39, 127.38, 125.38, 125.07, 124.03, 108.25, 107.87, 45.94, 39.27, 39.13, 31.87, 31.56, 30.39, 30.31, 30.27, 29.72, 29.32, 29.21, 29.09, 28.58, 28.40, 23.73, 23.61, 23.13, 23.08, 22.67, 14.10, 14.07, 14.02, 10.58, 10.54. MALDI-MS (m/z) of C₄₂H₅₈N₂O₂S₃ for [M⁺]: calcd. 718.37; found, 718.49.

1.3 Synthesis of DPP-Th-Br

At 0 °C, to a solution of DPP-Th (1.21 g, 1.68 mmol) in 100 mL chloroform was added N-Bromosuccinimide (0.36 g, 2.02 mmol). The reaction mixture was stirred at this temperature for 4 h, and then poured into 200 mL water. Then extracted with CH_2Cl_2 (50 mL \times 3). The resulting organic layer was washed with brine, dried over anhydrous MgSO₄ and evaporated to remove off solvent under vacuum. The residue was purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (1:1, v/v) as eluent to provide a blue powder (1.25 g, 93.3%). ¹H NMR (400 MHz, $CDCl_3$) δ 8.90 (d, J = 4.1 Hz, 1H), 8.53 (d, J = 4.1 Hz, 1H), 7.17 (d, J = 4.1 Hz, 1H), 7.15 (d, J = 4.2 Hz, 1H), 7.09 (d, J = 3.5 Hz, 1H), 6.68 (d, J = 3.4 Hz, 1H), 4.03 – 3.93 (m, 2H), 3.89 (t, J = 6.8 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 1.82 (d, J = 27.1 Hz, 2H), 1.70 – 1.56 (m, 2H), 1.40 – 1.12 (m, 26H), 0.84 (m, 15H). ¹³C NMR (101 MHz, CDCl₃) & 161.75, 161.30, 148.06, 144.06, 140.78, 137.99, 137.37, 136.69, 134.77, 131.45, 131.35, 127.25, 125.42, 125.17, 124.06, 118.24, 108.46, 107.70, 46.01, 39.25, 39.16, 31.87, 31.55, 30.39, 30.33, 30.25, 29.32, 29.21, 29.10, 28.57, 28.39, 28.38, 23.72, 23.64, 23.12, 23.06, 22.67, 14.10, 14.07, 14.02, 10.57, 10.53. MALDI-MS (m/z) of $C_{42}H_{57}BrN_2O_2S_3$ for $[M^+]$: calcd. 798.27; found, 798.42.

1.4 Synthesis of ThDPP2-Py

Compound $Py(BPin)_2$ (45.4 mg, 0.1 mmol), compound **DPP-Th-Br** (175.6 mg, 0.22 mmol), 2.0 M K₂CO₃ aqueous solution (1.0 mL), methanol (1.0 mL), and toluene (5.0 mL) were mixed together in a 25 mL two-neck flask and purged with nitrogen flow

for 20 min. To this solution was added tetrakis(triphenylphosphine)palladium (10 mg). The reaction mixture was heated to 80 °C and refluxed for 12 h. Then allowed mixture to cool to room temperature and extracted with CH₂Cl₂ (25 mL × 3). The resulting organic layer was washed with brine, dried over anhydrous MgSO₄ and evaporated to remove off solvent under vacuum. The residue was purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (2:1, v/v) as eluent to provide a dark blue powder (113.4 mg, 69.3%). ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 4H), 7.98 (s, 4H), 7.91 (s, 4H), 7.44 (s, 2H), 7.07 (s, 2H), 6.99 (s, 2H), 6.60 (s, 2H), 3.96 (d, *J* = 17.9 Hz, 8H), 2.69 (d, *J* = 6.9 Hz, 4H), 1.91 (s, 4H), 1.61 - 1.0 (m, 56H), 1.08 – 0.80 (m, 30H). MALDI-MS (m/z) of C₁₀₀H₁₂₂N₄O₄S₆ for [M⁺]: calcd. 1635.78; found, 1636.64.

1.5 Synthesis of TPADPP2-Py

Compound Py(BPin)₂ (45.4 mg, 0.1 mmol), compound **TPADPP-Br** (242.8 mg, 0.22 mmol), 2.0 M K₂CO₃ aqueous solution (1.0 mL), methanol (1.0 mL), and toluene (5.0 mL) were mixed together in a 25 mL two-neck flask and purged with nitrogen flow for 20 min. To this solution was added tetrakis(triphenylphosphine)palladium (10 mg). The reaction mixture was heated to 80 °C and refluxed for 12 h. Then allowed mixture to cool to room temperature and extracted with CH₂Cl₂ (25 mL × 3). The resulting organic layer was washed with brine, dried over anhydrous MgSO₄ and evaporated to remove off solvent under vacuum. The residue was purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (2:1, ν/ν) as eluent to provide a dark blue powder (180.5 mg, 80.4%). ¹H NMR (400 MHz, CDCl₃) δ 9.02 (d, J = 3.3 Hz, 2H), 8.94 (s, 2H), 8.03 (s, 4H), 7.95 (s, 4H), 7.48 (s, 2H), 7.34 (s, 2H), 7.33 (s, 2H), 7.19 (s, 2H), 7.00 (s, 4H), 6.97 (s,4H), 6.81 (s, 6H), 6.79 (s, 6H), 3.93 (m, 16H), 1.94 (s, 4H), 1.85 – 1.71 (m, 8H), 1.54 – 1.20 (m, 72H), 1.06 – 0.80 (m, 36H). MALDI-MS (m/z) of C₁₄₄H₁₇₆N₆O₈S₄ for [M⁺]: calcd. 2246.25; found, 2246.60.

2. TGA curves of DPP₂Py, ThDPP₂Py and TPADPP₂Py.

Fig. S1. The TGA curves of DPP₂Py, ThDPP₂Py and TPADPP₂Py.

D/A ratio	DIO ratio	Annealed temperature (°C)	$V_{\rm OC}({ m V})$	$J_{\rm SC}$ (mA/cm ²)	FF (%)	$PCE_{max}(\%)$
1:1	0%	25	0.85	6.63	54.31	3.05
1:1	1%	25	0.83	10.57	54.35	4.76
1:1	2%	25	0.82	9.29	58.08	4.43
1.5 : 1	1%	25	0.84	9.89	50.85	4.23
2:1	1%	25	0.82	9.29	58.08	4.43
1:1	1%	80	0.85	11.14	57.42	4.96
1:1	1%	110	0.85	11.13	60.07	5.67
1:1	1%	140	0.82	10.74	45.54	4.02
1:1	0%	110	0.86	8.30	50.49	3.59
1:1	0.5%	110	0.85	8.79	51.55	3.86
1:1	1.5%	110	0.84	11.86	53.64	5.32
1:1	2%	110	0.83	11.85	51.09	5.08

3. Photovoltaic properties of the DPP₂Py/PC₇₁BM-based OPV cells

Table S1. Photovoltaic performance of the DPP₂Py-based OPV cells.

Fig. S2. J-V characteristics of the DPP₂Py/PC₇₁BM based OPV cells under AM.1.5G illumination (100 mW/cm²): (a) D/A ratio optimization; (b) DIO optimization; (c) annealing temperature optimization. The optimized condition is D/A ratio of 1:1 with 1% DIO and annealed at 110 °C for 10 minutes.

D/A ratio	DIO ratio	Annealed temperature (°C)	$V_{\rm OC}({ m V})$	$J_{\rm SC}$ (mA/cm ²)	FF (%)	PCEmax/avea (%)
1:1	0%	25	0.66	3.15	56.54	1.17
1:1	0.5%	25	0.67	12.54	62.41	5.27
1:1	1%	25	0.66	15.35	57.89	5.88
1:1	1.5%	25	0.66	12.61	54.94	4.57
1.2 : 1	1%	25	0.66	13.04	56.92	4.89
1.5 : 1	1%	25	0.66	12.66	57.55	4.70
2:1	1%	25	0.66	8.00	49.70	2.86
1:2	1%	25	0.66	13.34	61.25	5.38
1:1	1%	110	0.67	12.68	54.65	4.63

4. Photovoltaic properties of the ThDPP₂Py/PC₇₁BM-based OPVcells

Table S2. Photovoltaic performance of the ThDPP₂Py-based OPV cells.

Fig. S3. J-V characteristics of the ThDPP₂Py/PC₇₁BM based OPV cells under AM.1.5G illumination (100 mW/cm²): (a) D/A ratio optimization; (b) DIO optimization; (c) annealing temperature optimization. The optimized condition is D/A ratio of 1:1 with 1% DIO without annealing.

5.	Photovoltaic	properties	of the	TPADPP	₂ Py/PC ₇	1BM-based	OPV	cells
----	--------------	------------	--------	--------	---------------------------------	-----------	-----	-------

D/A ratio	DIO ratio	Annealed temperature (°C)	$V_{\rm OC}(\mathbf{V})$	$J_{\rm SC}$ (mA/cm ²)	FF (%)	PCEmax/avea (%)
1:1	0%	25	0.62	2.08	53.35	0.68
1:1	0.5%	25	0.62	8.12	56.83	2.87
1:1	1%	25	0.62	10.77	63.94	4.26
1:1	1.5%	25	0.63	10.74	56.56	3.82
1.5 : 1	1%	25	0.61	10.82	62.70	4.15
2:1	1%	25	0.62	7.68	53.46	2.55
1:1	1%	110	0.61	8.10	52.53	2.62

Table S3. Photovoltaic performance of the TPADPP₂Py-based OPV cells.

Fig. S4. J-V characteristics of the TPADPP₂Py/PC₇₁BM based OPV cells under AM.1.5G illumination (100 mW/cm²): (a) D/A ratio optimization; (b) DIO optimization; (c) annealing temperature optimization. The optimized condition is D/A ratio of 1:1 with 1% DIO without annealing.

6. The comparison of the photovoltaic performance of DPP₂Py and other reported DPP₂Ar analogies.

Table S4. The comparison of photovoltaic performance of $DPP_2Py/PC_{71}BM$ and other $DPP_2Ar/PC_{71}BM$ based OPV cells.

SMs	$V_{\rm OC}({ m V})$	$J_{\rm SC}({\rm mA/cm^2})$	FF (%)	PCE max(%)	$\mu_{\rm h}({\rm cm}^2/{\rm Vs})$	Reference
DPP ₂ Py ^{a,c}	0.85	11.13	60.07	5.67	8.47×10^{-4}	This work
DPP ₂ An ^a	0.82	11.90	55.40	5.44	4.02×10^{-4}	Our previous work ¹
DPP ₂ Na ^b	0.87	9.5	53	4.4	1.1×10^{-3}	Jo's work ²
DPP ₂ Ph ^d	0.93	9.09	47	4.01	8.8×10^{-5}	Jo's work ³
DPP_2^d	0.84	7.40	37	2.31	6.0×10^{-5}	Jo's work ³
^a 1% DIO; ^b 0.5% DIO; ^c annealed at 110 °C; ^d annealed at 120 °C.						

Fig. S5. Graphical comparison of DPP₂Py/PC₇₁BM and other DPP₂Ar/PC₇₁BM based OPV cells

7. The film morphologies of SMs/PC₇₁BM-based OPV cells under optimized conditions.

Fig. S6. AFM phase images (5×5 μm) of the SMs/PC₇₁BM (1:1) blend films (a-c); SMs/PC₇₁BM (1:1) with 1% DIO (d-e); SMs/PC₇₁BM (1:1) with 1% DIO and annealed at 110 °C for 10 minutes (g-i); respectively.

8. NMR and MS spectra of SMs

Fig. S7. ¹H NMR spectrum of DPP_2Py .

Fig. S8. TOF-MS spectra of DPP₂Py.

Fig. S10. ¹³C NMR spectrum of ThDPP.

Fig. S13. ¹³C NMR spectrum of ThDPP-Br.

Fig. S14. TOF-MS spectra of ThDPP-Br.

Fig. S16. TOF-MS spectra of ThDPP₂Py.

Fig. S17. ¹H NMR spectrum of of TPADPP₂Py.

Fig. S18. TOF-MS spectra of TPADPP₂Py.

Reference:

- X. Duan, M. Xiao, J. Chen, X. Wang, W. Peng, L. Duan, H. Tan, G. Lei, R. Yang, W. Zhu, ACS Appl. Mater. Interfaces, 2015, 7, 18292–18299.
- 2. J. W. Lee, Y. S. Choi and W. H. Jo, Org. Electronics, 2012, 13, 3060-3066;
- 3. Y. S. Choi and W. H. Jo, Org. Electronics, 2013, 14, 1621-1628.