Electronic Supplementary Information

Beaded-Stream-like CoSe₂ Nanoneedles Array for Efficient

Hydrogen Evolution Electrocatalysis

Chuan-Pei Lee,^a Wei-Fu Chen,^{*a} Tadesse Billo,^{bcd} Yan-Gu Lin,^e Fang-Yu Fu,^{af}

Satya•N Samireddi, bgh Chih-Hao Lee, Jih-Shang Hwang, Kuei-Hsien Chen*ab and

Li-Chyong Chen*a

^a Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
 ^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
 ^c Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan

^d Engineering and System Science, National Tsing Hua University, Hsinchu 30012, Taiwan

^e National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

^fInstitute of Optoeletronic Science, National Taiwan Ocean University, Keelung 202, Taiwan

^g Molecular Science and Technology Program, Taiwan International Graduate Program,

Academia Sinica, Taipei 11529, Taiwan

^h Department of Chemistry, National Tsing Hua University, Hsinchu 30012, Taiwan.

*Corresponding author: Tel: +886-2-33665200; Fax: +886-2-2365-5404

E-mail: wfchen@ntu.edu.tw

E-mail: chenkh@pub.iams.sinica.edu.tw

E-mail: chenlc@ntu.edu.tw

Table S1. Comparison of overpotential, mass activity and charge transfer resistance

 of cobalt selenide catalysts and reported non-precious metal catalysts in acid

 electrolyte.

Catalysts	η_{20} (mV) ^a	j_0 (mA cm ⁻²) ^b	<i>j</i> @η=150 mV (mA cm ⁻²) ^c	Loading (mg cm ⁻²)	Mass activity @n=150 mV (mA mg ⁻¹)	$R_{ m ct}$ (Ω)	ref
CoSe ₂ -BSND	125	4.3×10 ⁻²	35.0	1.60	21.90	74 @ <i>η</i> =150 mV	this work
CoSe ₂ -PA	220	5.2×10 ⁻³	1.40	1.50	0.93	310@ <i>η</i> =150 mV	this work
Co-BSND	325	2.1×10 ⁻³	0.13	0.45	0.29		this work
MoS ₂ /RGO	140	N.A.	10.00	1.00	10.00	250@η=120 mV	28
Mo ₂ C nanowires	150	N.A.	20.00	0.21	95.20	90@η=150 mV	29
	η @current density		<i>j</i> ₀ (mA cm ⁻²) ^b	Loading (mg cm ⁻²)	Tafel slop (mV dec ⁻¹)	$R_{ m ct}$ (Ω)	Ref
MoS ₂ nanosheets	190 mV@10 mA cm ⁻²		3.89×10^{-2}	0.285	68.0	N.A.	S1 ^d
Vertically aligned MoSe ₂ layers	450 mV@8 mA cm ⁻²		$2.0 imes 10^{-3}$	0.135	108.0	N.A.	S2 ^d
CoSe ₂ nanoparticles on carbon fiber	137 mV@10 mA cm ⁻²		$4.9 imes 10^{-3}$	2.8	42.1	N.A.	23
CoSe ₂ nanoparticles on Ti foil	135 mV@10 mA cm ⁻²		$6.4 imes 10^{-2}$	3.0	62.0	N.A.	26
CoSe ₂ nanoparticles on graphite disk	193 mV@10 mA cm ⁻ ₂		N.A.	2.8	42.2	8.8@η= 240 mV	S3 ^d
CoS ₂ nanosheets/RGO-CNT	153 mV@20 mA cm ⁻²		6.26× 10 ⁻²	1.15	51.0	N.A.	S4 ^d
CoS2 thin film	192 mV	@10 mAcm ⁻²	$3.53 imes 10^{-3}$	N.A.	52.0	N.A.	S5 ^d

^a The overpotential for driving a current density at 20 mA cm⁻². ^b The exchange current density. ^c The

cathodic current density at fixed overpotential of 150 mV.

^d Reference:

S1. Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang ACS Catal., 2013, 3, 2101-2107.

S2. D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui Nano Lett., 2013, 13, 1341– 1347.

S3. H. Zhang, L. Leiab, X. Zhang RSC Adv., 2014, 4, 54344-54348.

S4. S. Peng et al. Angew. Chem. Int. Ed., 2014, 53, 12594-12599.

S5. M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, S. Jin J. Phys. Chem. C, 2014, 118, 21347-21356.

Fig. S1 SEM images of (a) Co_3O_4 and (b) $CoSe_2$ nanoneedle arrays taken at a magnification of 5,000x.

Fig. S2 Energy–dispersive X–ray spectra of (a) Co_3O_4 nanoneedles (Co_3O_4 –ND) array and (b) $CoSe_2$ beaded–stream-like nanoneedles ($CoSe_2$ –BSND) array.

Fig. S3 Fourier transformed magnitudes of the k^2 -weighted Co K-edge EXAFS data for CoSe₂-BSND and the Co foil (*k*=the photoelectron wavenumber).

Fig. S4 (a) The SEM image, (b) EDX spectra, (c) XRD pattern and XPS spectra of (d) Co 2p and (e) Se 3d region of $CoSe_2$ particles ($CoSe_2$ –PA) film prepared by using cobalt sulfate heptahydrate as the precursor.

Fig. S5 The SEM image of beaded stream–like nanoneedle Co (Co–BSND) array formed by treating the Co_3O_4 –ND template under H₂ at 400 °C.

Fig. S6 Two-time constant equivalent circuit models for fitting the EIS response of hydrogen evolution reaction on $CoSe_2$ electrodes, where R_s is the series resistance, R_{ct} is the charge transfer resistance, R_p related to the porosity of the electrode surface, and the double layer capacitance is represented by the elements C_{d1} and C_{d2} . Here R_s contains components arising from the resistance in the wiring (R_{wiring}), the resistance of the Ti foil (R_{cp}), the resistance of cobalt selenide (R_{CoSe}), the resistance between the interface of CoSe₂ and Ti foil (R_{int}), and the solution resistance (R_{soln}).

Fig. S7 Optical images depicting the H_2 bubbles pinning level on the surfaces of $CoSe_2$ -BSND (left) and $CoSe_2$ -PA (right) electrodes after electrolysis.

Fig. S8 A SEM micrograph of CoSe₂-BSND electrode after the durability test for 18h.