ZIF-8 derived carbon (C-ZIF) as bifunctional electron acceptor and HER cocatalyst for $g-\mathrm{C}_{3} \mathrm{~N}_{4}$: Construction of a metal-free, all carbonbased photocatalytic system for efficient hydrogen evolution

Fang He, ${ }^{\text {a,b }}$ Gang Chen, ${ }^{* a}$ Yansong Zhou, ${ }^{a}$ Yaoguang Yu, ${ }^{a}$ Laiquan Li, ${ }^{\text {b }}$ Sue Hao, ${ }^{a}$ and Bin Liu*b
${ }^{a}$ Department of Chemistry, Harbin Institute of Technology, Harbin 150001, P.R.

China

${ }^{b}$ School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
*Corresponding author: gchen@hit.edu.cn (G.C.); liubin@ntu.edu.sg (B.L.)

Fig. S1 XRD pattern of as-synthesized ZIF-8.

Fig. S2 (a) XRD pattern and (b) FT-IR spectra of C-ZIF.
Note: FT-IR spectrum of carbonized ZIF-8 (C-ZIF) indicates the formation of condensed $\mathrm{C}-\mathrm{N} / \mathrm{C}=\mathrm{N}$ bonds, along with the presence of $\mathrm{N}-\mathrm{H}$ bond. The carbon (CZIF) networks formed along with the decomposition of ZIF-8 occurring, which has been illustrated in the previous literature, ${ }^{1}$ and can be demonstrated as follows:

Fig. S3 XPS survey spectra (a), high-resolution XPS spectra of (b) C 1s, and (c) N 1s for $1 \mathrm{wt} \% \mathrm{C}-\mathrm{ZIF} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ composite.

Fig. S4 Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curves (inset) of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $1 \mathrm{wt} \% \mathrm{C}-\mathrm{ZIF} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ composite.

Fig. S5 UV-vis absorption spectra of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{C}-\mathrm{ZIF} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ composites with different C-ZIF contents.

Fig. S6 SPV spectra of pure $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $1 \mathrm{wt} \% \mathrm{C}-\mathrm{ZIF} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ composite

Table S1 Radiative fluorescence lifetimes and their relative percentages of photoexcited charge carriers in the $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ and $1 \mathrm{wt} \% \mathrm{C}-\mathrm{ZIF} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ composite.

Sample	$\tau_{1}(\mathrm{~ns})-$ Rel. $\%$	$\tau_{2}(\mathrm{~ns})-$ Rel. $\%$
$\mathrm{~g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	$1.27-54.71$	$9.33-45.29$
$1 \mathrm{wt} \% \mathrm{C}-\mathrm{ZIF} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$	$2.39-61.78$	$13.93-38.22$

Reference

1. H. X. Zhong, J. Wang, Y. W. Zhang, W. L. Xu, W. Xing, D. Xu, Y. F. Zhang, X. B. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235-14239.
