Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

ZIF-8 derived carbon (C-ZIF) as bifunctional electron acceptor and HER cocatalyst for g-C₃N₄: Construction of a metal-free, all carbonbased photocatalytic system for efficient hydrogen evolution

Fang He,^{a,b} Gang Chen,*a Yansong Zhou,^a Yaoguang Yu,^a Laiquan Li,^b Sue Hao,^a and Bin Liu*^b

^aDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, P.R. China

^bSchool of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore

*Corresponding author: gchen@hit.edu.cn (G.C.); liubin@ntu.edu.sg (B.L.)

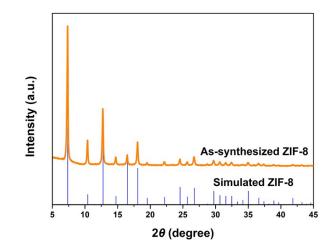


Fig. S1 XRD pattern of as-synthesized ZIF-8.

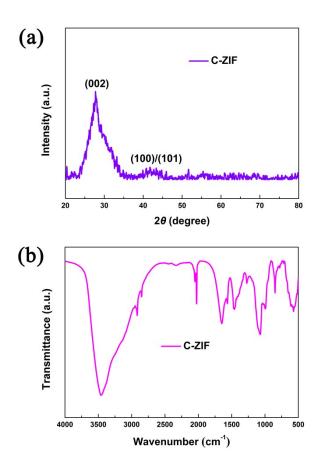
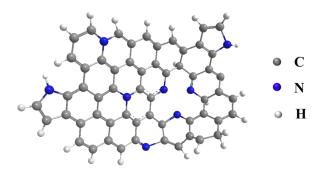



Fig. S2 (a) XRD pattern and (b) FT-IR spectra of C-ZIF.

Note: FT-IR spectrum of carbonized ZIF-8 (C-ZIF) indicates the formation of condensed C–N/C=N bonds, along with the presence of N–H bond. The carbon (C-ZIF) networks formed along with the decomposition of ZIF-8 occurring, which has been illustrated in the previous literature,¹ and can be demonstrated as follows:

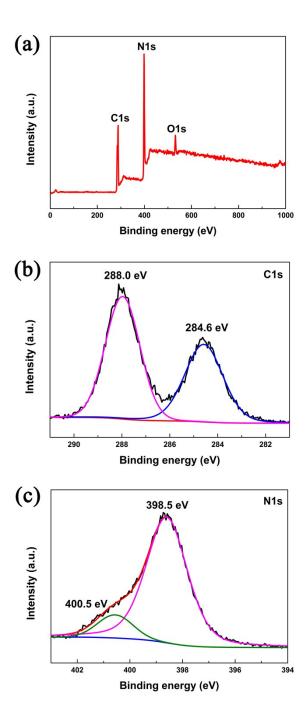


Fig. S3 XPS survey spectra (a), high-resolution XPS spectra of (b) C 1s, and (c) N 1s for 1 wt% C-ZIF/g-C₃N₄ composite.

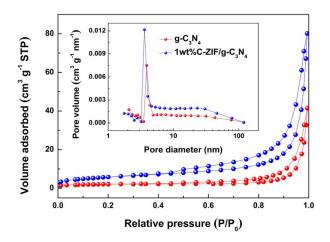


Fig. S4 Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curves (inset) of $g-C_3N_4$ and 1 wt% C-ZIF/g-C₃N₄ composite.

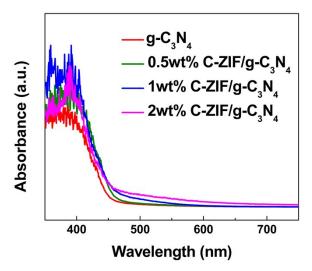


Fig. S5 UV-vis absorption spectra of $g-C_3N_4$ and $C-ZIF/g-C_3N_4$ composites with different C-ZIF contents.

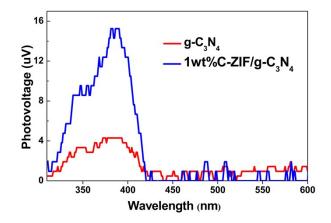


Fig. S6 SPV spectra of pure $g-C_3N_4$ and 1 wt% C-ZIF/g-C₃N₄ composite

Table S1 Radiative fluorescence lifetimes and their relative percentages ofphotoexcited charge carriers in the g- C_3N_4 and 1wt% C-ZIF/g- C_3N_4 composite.

Sample	$\tau_1(ns)$ -Rel. %	$\tau_2(ns)$ -Rel. %
g-C ₃ N ₄	1.27–54.71	9.33-45.29
1 wt% C-ZIF/g-C ₃ N ₄	2.39-61.78	13.93-38.22

Reference

1. H. X. Zhong, J. Wang, Y. W. Zhang, W. L. Xu, W. Xing, D. Xu, Y. F. Zhang, X. B.

Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235-14239.