Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Supercapacitive hybrid materials from the thermolysis

of porous coordination nanorods based on a catechol porphyrin

Shangbin Jin, Jonathan P. Hill, Qingmin Ji, Lok Kumar Shrestha and Katsuhiko Ariga

CONTENTS:
1.0 Synthesis of catechol porphyrin
2.0 Additional Figures
Figure S1. *H NMR of meso-tetrakis(3,4-dihydroxyphenyl)porphyrin
Figure S2. Powder X-ray diffraction profiles of MCP-PCPs
Figure S3 — S5. Nitrogen sorption curves
Figure S6. FE-SEM images
Figure S7. HR-TEM images
Figure S8. XPS survey scans for MCP-PCP@800
Figure S9. XPS spectra for MCP-PCP@800
Figure S10. Specific capacitance vs current density for MCP-PCP@800
Figure S11. Cyclic stability test by charge-discharge measurements
Figure S12. Charge-discharge curves at 2 A/g showing 1% and 2" cycles

3.0 References

S1

S2

S4

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13



1.0 Synthesis of catechol porphyrin ligand

OH
OMe  propionic acid

Reflux, 3h

Meso-tetrakis(3-methoxy-4-hydroxyphenyl)porphyrinSlvszoVI:niIIin (15.2 g, 0.1 mol) was
dissolved in propionic acid (500 mL) and heated to 150 °C. Pyrrole (6.7 g, 0.1 mol) was
added dropwise to the resulting solution. The solution was then refluxed for 3 h under air
then cooled to room temperature followed by distillation of propionic acid under reduced
pressure to a volume of approx. 200 mL and the resulting dark solution was allowed to stand
under ambient conditions overnight. The precipitate that formed was collected by filtration,
washed with methanol and dried under reduced pressure overnight yielding a purple powder
(2.6 g, 13 % yield). 'H-NMR (300 MHz, DMSO-de): 9.52 (s, 4H), 8.91 (s, 8H), 7.77 (s, 4H),
7.58 (d, 4H), 7.21 (d, 4H), 3.89 (s, 12 H), -2.87(s, 2H). MALDI-TOF-MS (dithranol): found:

798.84, calcd: CagH3sN4Og 798.27 ([M™]).

Meso-tetrakis(3,4-dihydroxyphenyl)porphyrin.$2 A 50 mL two-neck flask was charged
with meso-tetrakis(3-methoxy-4-hydroxyphenyl)porphyrin (0.8 g, 1 mmol) and dehydrated
dichloromethane (10 mL) was added giving a clear red-purple solution which was cooled to 0

°C. Boron tribromide (7 mL, 1M in CH2Cl,) was added to the solution stirring continued at
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room temperature for 72 h. The reaction mixture was then cooled to 0 °C and methanol (10
mL) was added followed by stirring for 30 min. The precipitate that formed was collected by
filtration and washed with deionized water and methanol. The product was further purified by
flash column chromatography on silica eluting with tetrahydrofuran. Product containing
fractions were combined and solvents removed under reduced pressure yielding the product
as purple powder. (Yield: 70 % yield). H-NMR (see below, 300 MHz, ds-acetone): 8.97 (bs,
8H), 8.32 (s, 8H), 7.74 (d, J = 2.1 Hz, 4H), 7.58 (dd, J = 2.1 Hz, 4.8 Hz, 4H), 7.55 (d, J =
4.8Hz, 4H), -2.70 (s, 2H). MALDI-TOF-MS (dithranol): found 746.53, calculated:

Ca4H31N4Og 746.22 ([M+H™]).
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2.0 Additional Figures.
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Figure S1. *H NMR of meso-tetrakis(3,4-dihydroxyphenyl)porphyrin in ds-acetone.
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Figure S2. Powder X-ray diffraction profiles of MCP-PCPs.
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Figure S3. Nitrogen sorption isotherm curve (A) and pore size distribution (B) of FeCP-PCP
at 77K.
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Figure S4. Nitrogen sorption isotherm curve (A) and pore size distribution (B) of CoCP-PCP
at 77K.
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Figure S5. Nitrogen sorption isotherm curve (A) and pore size distribution (B) of NiCP-PCP
at 77K.
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Figure S8. XPS survey scans for MCP-PCP@800 (metal as indicated in figure).
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Figure S9. XPS spectra for MCP-PCP@800. FeCP-PCP@800: (A) C 1s (B) Fe 2p. CoCP-
PCP@800: (C) C 1s (D) Co 2p. CuCP-PCP@800: (E) C 1s (F) Cu 2p. NiCP-PCP@800: (G)
C 1s (H) Ni 2p.
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Figure S10. Specific capacitance vs current density for (A) FeCP-PCP@800, (B) CoCP-
PCP@800, (C) NiCP-PCP@800, (D) CuCP-PCP@800.
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Figure S11. Cyclic stability test by charge-discharge measurements. (A) FeCP-PCP@800, (B)
CoCP-PCP@800, (C) NiCP-PCP@800, (D) CuCP-PCP@800.
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Figure S12. Charge-discharge curves at 2 A/g showing first and second cycles for (A) FeCP-
PCP@800, (B) CoCP-PCP@800, (C) NiCP-PCP@800, (D) CuCP-PCP@800.
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