Supplementary Information

Unique walnut-shaped porous MnO₂/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability

Shao-Zhuan Huang,^a Yi Cai,^a Jun Jin,^a Jing Liu,^a Yu Li,^{*,a} Hong-En Wang,^a Li-Hua Chen,^a Tawfique Hasan^b and Bao-Lian Su^{*,a,c,d}

^a Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, Hubei, China; Email: yu.li@whut.edu.cn and baoliansu@whut.edu.cn

- ^b Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, United Kingdom.
- ^c Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5500 Namur, Belgium; E-mail: <u>bao-lian.su@unamur.be</u>

^d Department of Chemistry and Clare Hall, University of Cambridge, <u>E-mail: bls26@cam.ac.uk</u>

Fig. S1. EDX pattern of MO-NSs.

Fig. S2. FT-IR spectra of PVP and MO-NSs.

Fig. S3. Size distribution of MO-NSs. Size distribution measured based on the SEM images.

Fig. S4. SEM images of the non-uniform MnO_2 nanoparticles without PVP: (a) low and (b) high magnification.

Fig. S5. TGA/DSC plots of MO-NSs under argon at a rate of 5 °C min⁻¹ from 50 to 800 °C.

Fig. S6. (a) XRD pattern and (b) SEM image of the sample after annealing under argon at 500 $^{\circ}$ C, showing the presence of Mn₃O₄.

Fig. S7. EDX pattern of MO/C-NSs.

Fig. S8. TGA plots of MO/C-NSs and P-MO/C-NSs under air at a rate of 5 °C min⁻¹ from 50 to 800 °C.

Fig. S9. (a) SEM and (b) TEM images of MO/C-NSs. The inset in (b) is an HRTEM image of the edge of a MO/C-NS sphere.

Fig. S10. Nitrogen adsorption-desorption isotherms of MO-NSs, MO/C-NSs and P-MO/C-NSs.

Fig. S11. Discharge/charge profiles of the P-MO/C-NSs electrode at various current densities.

Fig. S12. Discharge/charge profiles of the P-MO/C-NSs electrode at 50 mA g⁻¹ and 1000 mA g⁻¹ (the 85th cycle), respectively.

Fig. S13. Electrochemical impedance spectra of the three electrodes after 10 full cycles at 100 mA g^{-1} .

	Reversible capacity	Current	Initial	
MnO ₂ materials	[mAh/g], cycle	density	coulombic	Ref.
	numbers	[mA/g]	efficiency	
Porous MnO ₂ /C nanospheres	1110, 100	1000	75.2%	This work
MnO ₂ hollow urchins	481, 40	270	-	1
MnO ₂ nanotubes	656.5, 20	100	50%	2
MnO 2 /carbon nanotube array	500, 15	50	<50%	3
Nanoflaky MnO ₂ /carbon nanotube	620, 50	200	58.3%	4
PTh-coated MnO ₂ nanosheets	500, 100	500	-	5
MnO ₂ /conjugated polymer/graphene	948, 15	50	59%	6
Graphene-MnO ₂ nanotube	495, 40	100	~50%	7
Carbon nanohorns/MnO ₂	565, 60	100	70%	8
MnO ₂ nanotubes	618, 300	200	-	9
Polymorphic MnO ₂	220.7, 30	100	<50%	10
Mesoporous MnO ₂ nanosheet arrays	900, 200	1000	-	11
Onion-like carbon/MnO ₂	600, 100	200	<50%	12
Porous graphene-like MnO ₂	836, 200	100	64%	13
Hollow MnO ₂ nanospheres	637, 150	100	<50%	14
MnO ₂ nanoflakes/graphene foam	1200, 300	500	~65%	15
Nitrogen-doped graphene/MnO ₂	750, 200	300	50%	16

Table S1. The electrochemical performance comparison between our work and other published works

Reference:

- 1. B. Li, G. Rong, Y. Xie, L. Huang and C. Feng, *Inorg. Chem.*, 2006, 45, 6404.
- 2. J. Zhao, Z. Tao, J. Liang and J. Chen, Cryst. Growth Des., 2008, 8, 2799.
- 3. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda and P. M. Ajayan, Nano Lett., 2009, 9, 1002.
- 4. H. Xia, M. Lai and L. Lu, J. Mater. Chem., 2010, 20, 6896.
- 5. W. Xiao, J. S. Chen, Q. Lu and X. W. Lou, J. Phys. Chem. C, 2010, 114, 12048.
- 6. C. X. Guo, M. Wang, T. Chen, X. W. Lou and C. M. Li, Adv. Energy Mater., 2011, 1, 736.
- 7. A. Yu, H. W. Park, A. Davies, D. C. Higgins, Z. Chen and X. Xiao, *J. Phys. Chem. Lett.*, 2011, **2**, 1855.
- 8. H. Lai, J. Li, Z. Chen and Z. Huang, ACS Appl. Mater. Interfaces, 2012, 4, 2325.
- 9. L. Li, C. Nan, J. Lu, Q. Peng and Y. Li, Chem. Commun., 2012, 48, 6945.
- 10. K. Chen, Y. Dong Noh, K. Li, S. Komarneni and D. Xue, J. Phys. Chem. C, 2013, 117, 10770.
- 11. M. Kundu, C. C. A. Ng, D. Y. Petrovykh and L. Liu, Chem. Commun., 2013, 49, 8459.
- 12. Y. Wang, Z. J. Han, S. F. Yu, R. R. Song, H. H. Song, K. Ostrikov and H. Y. Yang, *Carbon*, 2013, **64**, 230.
- 13. Y. Li, Q. Zhang, J. Zhu, X. L. Wei and P. K. Shen, J. Mater. Chem. A, 2014, 2, 3163.
- 14. J. Yue, X. Gu, L. Chen, N. Wang, X. Jiang, H. Xu, J. Yang and Y. Qian, *J. Mater. Chem. A*, 2014, **2**, 17421.
- 15. J. Deng, L. Chen, Y. Sun, M. Ma and L. Fu, Carbon, 2015, 92, 177.
- 16. T. Yang, T. Qian, M. Wang, J. Liu, J. Zhou, Z. Sun, M. Chen and C. Yan, *J. Mater. Chem. A*, 2015, **3**, 6291.