Supplementary Information

All Solid Flexible Supercapacitor Operating at 4V with Cross-linked Polymer-Ionic Liquid Electrolyte

Yong-keon Ahn⁺^a, Bokyung Kim⁺^a, Jieun Ko^a, Duck-Jea You^a, Zhenxing Yin^a, Hyunjin Kim^a, Dalwoo Shin^b, Sanghun Cho^a, Jeeyoung Yoo^{*}^a and Youn Sang Kim^{*}^{a,c}

a. Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-744, Republic of Korea. Email:younskim@snu.ac.kr, jyoo78@snu.ac.kr

b. KOREA JCC CO. LTD. R&D Center 1163, Chungcheong-daero, Bugi-myeon,Cheongwongun, Chungcheongbuk-do, Republic of Korea

c. Advanced Institutes of Convergence Technology,864-1 Iui-dong, Yeongtong-gu, Suwonsi, Gyeonggi-do 443-270, Republic of Korea

^{*t*} These authors contributed equally to this work.

Abbreviations

Name	Abbreviation
poly-4-vninyphenol	P ₄ VPh
cross-linked poly-4-vninyphenol	c-P ₄ VPh
1-ethyl-3-methyl imidazoium bis(trifluoromethylsulfonyl)imide	EMITFSI
composite electrolyte consisting of EMITFSI and c-P ₄ VPh	IL-CPX*
N-Methyl-2-pyrrolidone	NMP
Supercapacitor	SC
Symmetrical Supercapacitor with ILCPX	IL-CPX SC

* x: weight ratio of EMITFSI based P_4VPh weight

Figure S1. Preparation procedure all-solid state supercapacitor and features of synthesized IL-CPs with various EMITFSI composition.

Figure S2. ATR-IR spectroscopy for cross-linked poly-4-vninyphenol

Table S1. A	Absorption	peaks	table	of ATR	FT-IR.

Functional gro	oups of cation	Functional groups of anion			
N=C-N stretching vibration	1560-1520 cm ⁻¹	-CF ₃ stretching	1350-1120 cm ⁻¹		
ring C=C vibration 1605-1585 cm ⁻¹		asymmetric vibration of CF ₃	680-590 cm ⁻¹ 555-505 cm ⁻¹		
C-H vibration for cyclic cations	3172-3126 cm ⁻¹	symmetric vibration of CF ₃	600-540 cm ⁻¹		

- (1) Socrates G. *Infrared Characteristic Group Frequencies: Tables and Charts*, 3rd Edition, Wiley & Sons: New York, 2004.
- (2) Kiefer, J.; Fries, J.; Leipertz, A. Appl. Spectrosc. 2007, **61**, 1306.

Figure S3. TGA for EMITFSI and P_4VPh

Figure S4. Electrochemical impedance spectroscopy of IL-CPs with stainless steel electrode.

Figure S5. Cyclio-voltammograms and full cell capacitance of IC-CPx SCs with porous carbon symmetrical full cell (x=3, 3.5, 4 and 4.5)

Figure S6. Galvanostatic charge-discharge profiles of IC-CPx SCs with porous carbon symmetrical full cell (x=3, 3.5, 4 and 4.5)

Figure S7. Linear sweep voltammogram of EMITFSI and IL-CP4.5 against AI foil in Al/Al cell (scan rate: 10 mV/s)

Ref.	electrolyte type	polymer	ionic liquid	solvent	ionic conductivity [mS cm ⁻¹]	electrode material	rated voltage [V]	capacitance	method	energy density [Wh kg ⁻¹]	additives
1	В	PAN	EMIBF4	none	15	AC	3	45 F g⁻¹	CV (5 mV s ⁻¹)	-	sulpholane
2	А	PVdF-HFP	EMTf	EC-PC		AC	2	136 F g ⁻¹	Galvanostatic charge/discharge (1 mA cm ⁻²)	18.8	-
3	В	PVdF-HFP	EMITFSI	none	1.5	AC	2~4	20 F g ⁻¹	Galvanostatic charge/discharge (10 mA cm ⁻²)	20	zeolite
4	В	PEO	EMTf	none	0.1	MWCNT	2	3 F g ⁻¹	Galvanostatic charge/discharge (0.2 mA cm ⁻²)	-	-
5	В	PEO	EMIHSO4	none	1.82	graphite	1.5	2 mF cm ⁻²	CV (1 mV s ⁻¹)	-	silica
6	В	PEO	EMITri	none	16.2	AC	3	92 F g ⁻¹	Galvanostatic charge/discharge (2 mA cm ⁻²)	0.01	-
7	В	PAN	BMIMTFSI	none	2.42	RGO	3	108 F g ⁻¹	Galvanostatic charge/discharge (2 mA cm ⁻²)	30.51	-
8	А	PVdF-HFP	EMITf	EC-PC	1	AC	2	167 F g ⁻¹	Galvanostatic charge/discharge (1 mA g ⁻¹)	23.1	lithium triflate
9	А	pDADMATFSI	PYR ₁₄ TFSI	none	0.5	AC	3.5	100 F g ⁻¹	Galvanostatic charge/discharge (1 mA cm ⁻²)	37	-
this work	В	c-P₄VPh	ENITFSI	none	0.4	porous carbon	4	172 F g ⁻¹	Galvanostatic charge/discharge (1 mA cm ⁻²)	72.29	-

Table S1. Comparisons between prepared polymer electrolyte and other reported polymer electrolytes.

Electrolyte type A : incorporation of an IL in a polymer matrix (The role of polymer is separator)

Electrolyte type B : polymerization of a monomer in an IL

Electrolyte type C : poly ionic liquid

Abbreviation in Table S1.

- EMIBF₄ : 1-ethyl-3-methyl-imidazolium tetrafluoroborate EMITf : 1-ethyl-3-methyl-imidazolium trifluoromethanesulfonate EMIHSO₄ : 1-ethyl-3-methylimidazolium hydrogensulfate EMITri : 1-ethyl-3-methyl-imidazolium triflate PYR₁₄TFSI : N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl) imide PAN : poly acrylonitrile PVdF-HFP : poly(vinylidenefluoride—hexafluoropropylene) PEO : poly ethylene oxide pDADMATFSI : poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide EC : ethylene carbonate PC : propylene carbonate AC : activated carbon
- MWCNT : multi-walled carbon nanotube

Reference

- 1. A. Lewandowski, A. Swiderska, Solid State Ion. 2003, 161, 243.
- 2. G.P. Pandey, S.A. Hashmi, Y. Kumar, *Energy & Fuels* 2010, 24, 6644
- 3. W. Lu, K. Henry, C. Turchi, J. Pellegrino, J. Electrochem. Soc. 2008, 155, A361.
- 4. G.P. Pandey, Y. Kumar, S. a. Hashmi, *Solid State Ion*. 2011, **190**, 93.
- 5. S. Ketabi, X. Liu, Z. Le, K. Lian, *ECS Trans.* 2013, **50**, 411.
- 6. A. Lewandowski, A. Swiderska, Appl. Phys. A Mater. Sci. Process. 2006, 82, 579.
- 7. P. Tamilarasan, S. Ramaprabhu, *Energy* 2013, **51**, 374.
- 8. Y. Kumar, G.P. Pandey, S. a. Hashmi, J. Phys. Chem. C 2012, 116, 26118.
- Girum Ayalneh Tiruye, David Munoz-Torrero, Jesus Palma, Marc Anderson, *Journal of Power Sources* 2015, 279, 472