Supplementary Information

Polybenzoxazine-based highly porous carbon nanofibrous membranes hybridized by tin oxides nanoclusters: durable mechanical elasticity and capacitive performance

Jianlong Ge^a, Yongshuai Qu^a, Leitao Cao^a, Fei Wang^a, Lvye Dou^a, Jianyong Yu^a, Bin Ding^{a,b,*}

^a Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.

^b Nanofibers Research Centre, Modern Textile Institute, Donghua University, Shanghai 20051, China

*Email: binding@dhu.edu.cn

Fig. S1 Chemical synthetic route of BA-a.

Fig. S2 Digital photo of the precursor membranes with different $SnCl_2$ weight ratio to BA-a monomer before (a) and after (b) curing.

Fig. S3 The DSC curves of as-spun nanofibrous membranes with different weight ratio of $SnCl_2$ to BA-a.

Fig. S4 FT-IR spectra of relevant original and cured precursor nanofibrous membranes.

Fig. S5 XRD spectra of pure carbon membranes derived from precursor nanofibers without SnCl_2 .

Fig. S6 TGA plots of $SnO_2/CNFs$ derived from precursor nanofibers with different 60% $SnCl_2$ aspect to BA-a.

Fig. S7 Digital photos demonstrate the (a) tensile strength and (b) bending rigidity testing process.

Fig. S8 Stress-strain curves of the $SnO_2/CNFs$ membranes derived from different carbonization temperatures.

Fig. S9 Compare of the bending rigidity of the as-prepared $SnO_2/CNFs$ membranes and commercial polymer based tissue paper.

Fig. S10 CV curves of CNFs derived from composite $SnO_2/CNFs$ via etching the SnO_2 component.

Fig. S11 CV curves of supercapacitors derived from $SnO_2/CNFs$ electrodes suffering from various cycles of bending deformation.

Fig. S12 (a) Leakage current curves of the $SnO_2/CNFs$ based supercapacitor. (b) Self-discharge curve of the device.

Weight ratio of SnCl ₂ aspect to BA-a	Viscosity (cps)	Conductivity (µS m ⁻¹)	Surface tension (mN m ⁻¹)
0	44	310	35
20	54	494	30
40	209	851	27
60	215	1308	31

Table S1. Composition and property of different electrospinning solutions.