Supporting information

## Single-Crystalline $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> Void@Frame

## Microframes for Rechargeable Batteries

Jian Zhu, Da Deng\*

Department of Chemical Engineering and Materials Science, Wayne State University, 5050

Anthony Wayne Dr., Detroit, Michigan, United States, 48202

\*E-mail:da.deng@wayne.edu



**Figure S1.** The  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> precursor used in this work: (a) Low-magnification FESEM image shows dozens of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> microbeads with pore; (b) magnified FESEM image of a typical  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> microbead showing the detailed structure and texture; (c) Low-magnification TEM image shows dozens of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> microbeads, and (d) magnified TEM image of a few representative  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> microbeads.



**Figure S2.** Charge-discharge profiles of the  $120^{\text{th}}$ ,  $240^{\text{th}}$ ,  $360^{\text{th}}$  and  $550^{\text{th}}$  cycles under cycling test at 200 mA/g, indicating the same electrochemical reactions involved and high reversibility.



**Figure S3.** (a) XRD and (b) FESEM image of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> microstructure solid control for LIB cycling test for comparison.



**Figure S4.** (a) Low magnification and (b) magnified FESEM images for  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> microframes anode after 120-cycle rate test in LIB. The outline of the microstructures was maintained after repeated charge-discharge processes.