Supporting Information

Mesoporous Boron-doped Onion-like Carbon as Long-Life Oxygen

Electrode for Sodium-Oxygen Batteries

Chaozhu Shu,^{a,b} Yangming Lin,^b Bingsen Zhang,^b Sharifah Bee Abd Hamid,^c

Dangsheng Su*b

^a College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, P. R. China.

^b Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Science, Shenyang, 110016, P. R. China.

^c Nanotechnology&Catalysis Research Centre (NANOCAT), University of Malaya, IPS Building, Kuala Lumpua 50603, Malaysia.

* Corresponding author. Fax: +86-24-83970019; Tel: +86-24-83970029; E-mail: dssu@imr.ac.cn

Figure S1. HRTEM image and SAED pattern (inset) of nanodiamond.

Figure S2. The discharge/charge profiles of the (a) B-OLC; (b) OLC and (c) Super P at various current densities. (d) Comparison of discharge specific capacity of Na-O₂ cells with the three kinds of O_2 electrodes at different current densities. (e) The discharge/charge profiles of the B-Super P at various current densities. (f) B 1s XPS spectra of B-Super P.

Figure S3. half-capacity voltage vs. cycle number for Na-O₂ batteries with (a) OLC and (b) Super P at a current density of 0.3 mA cm^{-2} .

Figure S4. Consecutive restricted discharge and charge curves of Na-O₂ battery using B-OLC oxygen electrode at a current density of 0.3 mA cm^{-2} .

Figure S5. ¹H NMR spectra of 1 M LiTFSI in TEGDME electrolyte (a) before and (b) after cycling.

(C) (B) (A) (A) (A) $CH_3-O-CH_2-CH_2-O-CH_2-CH_2-O-CH_2-CH_2-O-CH_2-O-CH_3$