Supporting Information for

## Mesoporous soft carbon as an anode material for sodium ion batteries

## with superior rate and cycling performance

Bin Cao, Huan Liu, Bin Xu,*, Yaofei Lei, Xiaohong Chen and Huaihe Song*

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of
Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
E-mail: binxumail@163.com; songhh@mail.buct.edu.cn.


Figure S 1. TEM image of nano- $\mathrm{CaCO}_{3}$.


Figure S2 TEM image (a) and HR-TEM image (b) of MSC after 3000 cycles at 500 $\mathrm{mAg}^{-1}$.

The $\mathrm{Na}^{+}$diffusion properties were evaluated by calculating the sodium-ion diffusion coefficient with following equation: ${ }^{[1,2]}$

$$
\begin{equation*}
D=\frac{R^{2} T^{2}}{2 A^{2} n^{4} F^{4} C^{2} \sigma^{2}} \tag{S1}
\end{equation*}
$$

where R is the gas constant, T is the absolute temperature, A is the electrode surface area, n is the number of electrons involved in the electrochemical reaction, F is Faraday's constant, C is the concentration of $\mathrm{Na}^{+}$and $\sigma$ is the Warburg coefficient that is associated with $Z^{\prime}$ at low frequency.

$$
\begin{equation*}
Z^{\prime}=R_{s}+R_{c t}+\sigma \omega^{-1 / 2} \tag{S2}
\end{equation*}
$$

Herein, $Z^{\prime}$ is the real part of Nyquist plot (Figure S3a) at low-frequency region. $\mathrm{R}_{\mathrm{s}}$ is bulk resistance of the cell, which reflects a combined resistance of the electrolyte, separator and electrodes. $R_{c t}$ is the charge transfer resistance and $\omega$ is angular frequency. $\sigma$ can be obtained from the slope of Randles plot, a plot of the real part of impedance against $\omega^{-1 / 2}$ as shown in Figure S3b.


Figure S3 (a) Nyquist plots of MSC and MPC for the fresh cells. (b) The relationship plot between $Z^{\prime}$ and $\omega^{-1 / 2}$ at low-frequency region.

The D (sodium-ion diffusion coefficient) of MSC and MPC were calculated by equation (S1), and are $1.85 \times 10^{-11}$ and $1.67 \times 10^{-12} \mathrm{~cm}^{2} / \mathrm{S}$, respectively.

## References:

1 B. Jin, E. M. Jin, K. Park and H. Gu, Electrochem. Commun., 2008, 10, 1537.
2 M. Shi, Z. Chen and J. Sun, Cement Concrete Res., 1999, 29, 1111.

