Effects of flux synthesis on SrNbO₂N particles for photoelectrochemical water splitting

Masanori Kodera, Haruki Urabe, Masao Katayama, Takashi Hisatomi, Tsutomu

Minegishi, Kazunari Domen*

Department of Chemical System Engineering, School of Engineering, The University of

Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Electronic Supplementary information

Contents

Fig. S1: Diffuse reflectance spectra of SrNbO₂N particles prepared by NaCl flux method at different preparation stages.

Fig. S2: Diffuse reflectance spectra of SrNbO₂N particles prepared from oxide precursors using different types of flux.

Fig. S3: SEM images of SrNbO₂N particles prepared from oxide precursors using different types of flux.

Fig. S4: TEM images and SAED pattern for oxide precursor produced using NaI flux.

Fig. S5: XRD patterns, diffuse reflectance spectra, and PEC performance for oxide precursors and SrNbO₂N particles prepared using NaCl, RbCl and NaI fluxes with and without pre-calcination.

Fig. S6: SEM images of pre-calcinated oxide precursors prepared using NaCl, RbCl, and NaI fluxes.

Fig. S7: SEM images of SrNbO₂N/Nb/Ti photoanodes. The SrNbO₂N was synthesized from a precalcinated oxide precursor treated using NaI.

Fig. S8: Current-time curves at 1.23 V_{RHE} of SrNbO₂N with different CoPi deposition time

Table S1: EDX elemental analysis results for oxide precursors treated using different types of flux.

Table S2: Elemental analysis results for oxide precursor and SrNbO₂N particles treated using NaI flux.

Table S3: A crystal structure model of (NaNbO₃)_{0.35}-(Sr_{4/3}Nb_{2/3}O₃)_{0.65} for Rietveld Analysis of SNO(NaI)

Table S4: Lattice constants of SNON (no flux) and SNON (AX) obtained from Rietveld Analysis.

Fig. S1 Diffuse reflectance spectra of (a) SNON (no flux), (b) SNON (oxide), (c) SNON (nitridation), and (d) SNON (post).

Fig. S2 Diffuse reflectance spectra of SrNbO₂N particles obtained from oxide precursors prepared (a) without flux, and using (b) NaCl, (c) KCl, (d) RbCl, (e) SrCl₂, (f) NaBr, (g) KBr, (h) NaI, (i) KI, and (j) CsI fluxes. (k) Spectrum of oxide precursor treated prepared using NaI flux.

Fig. S3 SEM images of SrNbO₂N obtained from oxide precursors prepared (a) without flux, and using (b) NaCl, (c) KCl, (d) RbCl, (e) SrCl₂, (f) NaBr, (g) KBr, (h) NaI, (i) KI, and (j) CsI fluxes. The white bars in the SEM images represent 2 μm.

Fig. S4 (a,b) TEM images of oxide precursor prepared using NaI flux, and (c) SAED pattern from area indicated by white square in (a).

Fig. S5 (A) XRD patterns for (a) SNO (NaCl), (b) SNO (NaCl, pre-calcinated), (c) SNON (NaCl), (d) SNON (NaCl, pre-calcinated) using nitridation conditions of 1173 K for 15 h, (e) SNON (NaCl, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (f) SNO (RbCl), (g) SNO (RbCl, pre-calcinated), (h) SNON (RbCl), (i) SNON (RbCl, pre-calcinated) using nitridation conditions of 1173 K for 15 h, (j) SNON (RbCl, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (k) SNO (NaI), (l) SNO (NaI, pre-calcinated), (m) SNON (NaI), (n) SNON (NaI, pre-calcinated) using nitridation conditions of 1173 K for 15 h, (o) SNON (NaI, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (k) SNO (NaI), (l) SNO (NaI, pre-calcinated), (m) SNON (NaI, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (k) SNO (NaI), (l) SNO (NaI, pre-calcinated), (m) SNON (NaI, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (k) SNO (NaI), (l) SNO (NaI, pre-calcinated), (m) SNON (NaI, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (k) SNO (NaI), (l) SNO (NaI, pre-calcinated) using nitridation conditions of 1223 K for 20 h, (l) Diffuse reflectance spectra and (C) current-potential curves for SrNbO₂N prepared from oxide precursors using (a)-(c) NaCl flux, (d)-(f) RbCl flux, and (g)-(i) NaI flux. (a), (d), (g) without pre-calcination, (b), (e), (h) pre-calcinated and nitrided at 1173 K for 15 h, and (c),(f), (i) pre-calcinated and nitrided at 1223 K for 20 h.

Fig. S6 SEM images of (a) SNO (NaCl), (b) SNO (RbCl), (c) SNO (NaI), (d) SNO (NaCl, precalcinated), (e) SNO (RbCl, pre-calcinated), and (f) SNO (NaI, pre-calcinated).

Fig. S7 SEM images of SrNbO₂N/Nb/Ti photoanode. SrNbO₂N was synthesized from pre-calcinated oxide precursor produced using NaI flux. (a) Cross-sectional view and (b) top view of electrode.

Fig. S8 Current-time curves at 1.23 V_{RHE} of SrNbO₂N prepared from oxide precursors using NaI flux with different CoPi deposition time (a) 30 sec, (b) 200 sec, and (c) 1000 sec. A filled triangle indicates the time light was turned on and open triangles indicate the one was turned off.

Kind of flux	Cation of flux	Sr	Nb
w/o flux	-	1.01	1
NaCl	< 0.01	0.99	1
KCI	0.01	0.98	1
RbCl	0.01	1.00	1
SrCl ₂	-	1.12	1
NaBr	< 0.01	1.00	1
KBr	0.01	0.99	1
Nal	0.35	1.13	1
KI	0.19	1.13	1
Csl	0.09	1.11	1

Table S1 EDX elemental analysis results for oxide precursors prepared using different types of flux.The Nb content is normalized to 1.

(a)					
	Molar ratio of elements / -				
	Na	Sr	Nb	0	
TEM-EDX	0.36	0.87	0.78	3.00	
ICP	0.39	0.87	0.83	-	
(b)					
	Molar ratio of elements / -				
	Na	Sr	Nb	0	
TEM-EDX	0.02	1.00	1.01	-	

Table S2 Elemental analysis results for (a) oxide precursor and (b) SrNbO₂N particles prepared using NaI flux.

Table S3A crystal structure model of $(NaNbO_3)_{0.35}$ - $(Sr_{4/3}Nb_{2/3}O_3)_{0.65}$ for Rietveld Analysis ofSNO(NaI)

Oite Wyckoff	Site occupancy	Fractional coordinates			
Sile	notation*	(g)	х	У	z
Na1	8c	0.03	1/4	1/4	1/4
Sr1	8c	0.97	1/4	1/4	1/4
Na2	4a	0.15	0.0	0.0	0.0
Sr2	4a	0.05	0.0	0.0	0.0
Nb1	4a	0.80	0.0	0.0	0.0
Na3	4b	0.17	1/2	1/2	1/2
Sr3	4b	0.0634	1/2	1/2	1/2
Nb3	4b	0.7666	1/2	1/2	1/2
0	24d	1.0	0.0	1/4	1/4

* K₂NaAlF₆ structure.

Kind of flux	Lattice constant (nm) ^a	
without	0.404946(6)	
NaCl	0.404166(3)	
KCI	0.404171(3)	
RbCl	0.404241(3)	
SrCl ₂	0.404440(9)	
NaBr	0.404211(3)	
KBr	0.404180(3)	
Nal	0.404620(3)	
KI	0.404528(4)	
Csl	0.404636(9)	

Table S4 Lattice constants of SNON (no flux) and SNON (AX) obtained from Rietveld Analysis.

^a Values in parentheses are standard deviations in the last digits.