## **Electronic Supplementary Information**

## Achieving high-performance planar perovskite solar cell with Nbdoped TiO<sub>2</sub> compact layer by enhanced electron injection and efficient charge extraction

Bai-Xue Chen, Hua-Shang Rao, Wen-Guang Li, Yang-Fan Xu, Hong-Yan Chen, Dai-

Bin Kuang<sup>\*</sup> and Cheng-Yong Su

MOE Key Laboratory of Bio inorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China

\* Corresponding author.

Fax: (+86) 20-8411 3015.

E-mail: kuangdb@mail.sysu.edu.cn



Fig. S1. XPS survey spectrum of 2% Nb-doped TiO<sub>2</sub>.



Fig. S2. Quantitive analysis of the content of Nb dopant by energy dispersive spectroscopy (EDS) whose theoretical molar ratio are 5%, 3%, 2% and 1%, respectively.



**Fig. S3**. The top-view SEM images of perovskite films deposited on pristine  $TiO_2$  (a), 1% Nb-doped  $TiO_2$  (b), 3% Nb-doped  $TiO_2$  (c) and 5% Nb-doped  $TiO_2$  (d), respectively. The number of pinholes in perovskite layer deposited on Nb-doped  $TiO_2$ compact layer have first decreased from 0% to 2%, whereas retained nearly the same for 3% Nb doping. However, as the doping content increased to 5%, the pinholes turned to be more serious and the coverage of perovskite reduced sharply.



**Fig. S4.** AFM images of 2% Nb-doped  $TiO_2$  (a), $TiO_2$  (b) films on FTO substrates with calculated roughness of 18.4 and 18.6, respectively.



Fig. S5. XRD patterns of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> film deposited on FTO substrate.



Fig. S6. The box-chart images of photovoltaic parameters which extracted from measuring current density-voltage curves for devices based on  $TiO_2$  with various Nb doping contents at simulated one sun illumination (100 mW cm<sup>-2</sup>, AM 1.5G).



Fig. S7. Nyquist plot of the perovskite solar cells based on pristine  $TiO_2$  and 2% Nbdoped  $TiO_2$  compact layer at the open-circuit voltage under illumination (100 mW cm<sup>-2</sup>).

|                              | Direction | J <sub>sc</sub> / mA cm-2 | $V_{\rm oc}$ / mV | PCE / % | FF   |
|------------------------------|-----------|---------------------------|-------------------|---------|------|
| Pristine<br>TiO <sub>2</sub> | FB-SC     | 19.1                      | 955               | 13.1    | 0.72 |
|                              | SC-FB     | 19.1                      | 900               | 10.7    | 0.62 |
|                              | average   | 19.1                      | 928               | 11.9    | 0.67 |
| 2% Nb-doped TiO <sub>2</sub> | FB-SC     | 19.4                      | 992               | 15.2    | 0.79 |
|                              | SC-FB     | 194                       | 965               | 13.6    | 0.73 |
|                              | average   | 19.4                      | 979               | 14.4    | 0.76 |

**Table S1.** The photovoltaic parameters for PSC devices with 2% Nb-doped  $TiO_2$  compact layer which extracted from measuring *J-V* curves at simulated one sun illumination (100 mW cm<sup>-2</sup>, AM 1.5G) performed by FB-SC and SC-FB.

 Table S2. The fitted parameters for EIS measurements acquired under 1 sun

 illumination at open-circuit potential.

|                              | $R_{\rm s}/\Omega~{ m cm^2}$ | $R_{ m rec}$ / $\Omega$ cm <sup>2</sup> |
|------------------------------|------------------------------|-----------------------------------------|
| TiO <sub>2</sub>             | 17.8                         | 610.1                                   |
| 2% Nb-doped TiO <sub>2</sub> | 8.7                          | 691.5                                   |