Supplementary Information

Graphene oxide-wrapped bipyramidal sulfur@ polyaniline core-shell structure as cathode for Li-S battery with enhanced electrochemical performance

Kailong Zhang,^a Yanhua Xu,^a Yue Lu,^a Yongchun Zhu,^{*a} Yuying Qian,^a Danfeng Wang,^a Jianbin Zhou,^a Ning Lin,^a and Yitai Qian^{*a,b}

^a Department of Chemistry and Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, P.R. China. Tel: +86-551-63601589; E-mail: ychzhu@ustc.edu.cn

*Corresponding author. Tel.: 86-551-6360-1589; Fax: +86-551-360-7402. E-mail address: ychuzhu@ustc.edu.cn (Y. C. Zhu), ytqian@ustc.edu.cn. (Y. Qian)

Figure S1 TEM of (a)S@PANI and (b) S@PANI/GO after dealing with acetone.

Figure S2 Voltage-capacity curves of S@PANI/GO electrode at different rates (increased from 0.05 C to 4 C).

Figure S3 (a) SEM image of S@PANI/GO-1 composite; (b) TEM (after dealing with acetone) image of S@PANI/GO-1 composite; (c) TGA curve of S@PANI/GO-1 composite, including 78.1 wt% content of sulfur and 1.5 wt% absorbed water; (d) Cyclic voltammograms of S@PANI/GO-1 and the scan rate of all tests is 0.1 mV s⁻¹; (e) Cycle performance of S@PANI/GO-1 composite (the gray line is the coulombic efficiency of 1 C).

Cathode sulfur	Sulfur	Mass	Discharge	Reversible	discharge	Voltage range	Reference
content	loading	loading	current rate	capacity/(mA h g ⁻¹)		(V vs.Li/Li ⁺)	number
	(wt %)	(mg cm ⁻²)		Initial	After (nth)		
S@PANI/GO	54.3	1.8-3.0	1 C	1027	641 (300)	1.7-2.8	this work
S@PANI/GO	78.9	1.8-3.0	0.2 C	1485	730 (100)	1.7-2.8	this work
S@PANI/GO	78.1	1.8-3.0	1 C	1100	540 (300)	1.7-2.8	this work
nanoS@PANI/G	53	0.8	0.1 C	1625	600 (100)	1.5-3.0	1
PANI-modified CTAB–GO–S	70.1	0.8	0.2 C	1016	715 (300)	1.6-2.8	2
PANI/GO@S	66.4	1.5	0.2 C	1037	599 (200)	1.8-2.7	3
Sulfur–PANI– GNRs	62	1.2	0.4 C	673	514 (400)	1.7-3.0	4
NGNS-S-PANI	52.5	N/A	0.5 C	1277	694 (100)	1.4-3.0	5
graphene/S/ PANI	75	N/A	0.1 C	N/A	740 (150)	1.5-3.0	6
CG-S@PANI	55	0.6-1.2	0.2 C	851	633 (100)	1.5-2.8	7

Table S1 Summary of representative graphene-based PANI/ S composite

1. Y. Liu, J. Zhang, X. Liu, J. Guo, L. Pan, H. Wang, Q. Su, G. Du. Mater. Lett., 2014, 133, 193.

2. Y. Qiu, W. Li, G. Li, Y. Hou, L. Zhou, H. Li, M. Liu, F. Ye, X. Yang, Y. Zhang. Nano Res., 2014, 7, 1355.

3. X. Wang, Z. Zhang, X. Yan, Y. Qu, Y. Lai, J. Li. Electrochim. Acta, 2015, 155, 54.

4. L. Li, G. Ruan, Z. Peng, Y. Yang, H. Fei, A.O. Raji, E.L.G. Samuel, J.M. Tour. ACS Appl. Mater. Interfaces, 2014, 6, 15033.

5. K. Ding, Y.K. Bu, Q. Liu, T.F. Li, K. Meng, Y.B. Wang. J. Mater. Chem. A, 2015, 3, 8022.

6. P. Wei, M.Q. Fan, H.C. Chen, X.R. Yang, H.M. Wu, J.D. Chen, T. Li, L.W. Zeng, Y.J. Zou. *Electrochim. Acta*, 2015, **174**, 963.

7. X. Li, M. Rao, H. Lin, D. Chen, Y. Liu, S. Liu, Y. Liao, L. Xing, M. Xu, W. Li. J. Mater. Chem. A, 2015, 3, 18098.

•			•	• •	•		
Samples	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	CPE ₁ (F)	$CPE_2(F)$	W-P	
S	3.469	47.39	36.81	8.01×10 ⁻⁶	8.89×10 ⁻⁴	0.43268	
S/GO	2.329	27.54	18.72	1.02×10 ⁻⁵	2.50×10-3	0.36798	
S@PANI	1.872	11.33	17.16	8.29×10-6	1.32×10-3	0.36175	
S@PANI/G	2 3 2 1	7.604	12 42	1.08×10-5	2.33×10-3	0.41274	
0	2.321	7.004	12.42				

Table S2 Equivalent-Circuit Parameters Obtained from Fitting the Experimental Impedance Spectra

Figure S4 (a) SEM image, and (b) TEM (after dealing with acetone) image of S@PANI/GO composite after 100 cycles.