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Supporting Figures

Figure S1. PTIO solubility measurements in MeCN: (a) photographs of a series of PTIO solutions 
in MeCN at different concentrations of 1 mM, 3 mM, 10 mM, 100 mM, 500 mM, 1.0 M, 2.0 M, 
and oversaturated; (b) photographic comparison of the 1000-fold diluted supernatant from the 
oversaturated PTIO solution with other PTIO solutions, with the former closest to the 3mM one; 
(c) the UV-vis spectrum of the 5 mM PTIO solution in MeCN showing that PTIO has strong 
absorption, which explains the similarly deep-blue solution color at ≥0.1 M PTIO. 



Figure S2. Expanded view of the redox peaks in the repeated CV scans of PTIO (Figure 1a), 
showing respective CV curves of the 5th, 100th, 300th and 500th cycles.  

Figure S3. The voltage curves of the PTIO flow cells using (a) 0.1 M PTIO; and (b) 0.5 M PTIO; 
(c) cycling efficiency and capacity of the 0.1 M PTIO flow cell for 100 cycles. The supporting 
electrolyte was 1.0 M TBAPF6 in MeCN. The current density was 20 mA cm-2.



Figure S4. Full range FTIR spectra of the PTIO electrolyte systems: (a) MeCN, 1.0 M 
TBAPF6/MeCN, and 0.5 M PTIO in 1.0 M TBAPF6/MeCN; (b) 0.5 M PTIO and charge species 
(PTIO+ and PTIO-) in 1.0 M TBAPF6/MeCN. 

Figure S5. The FTIR spectra of the TBAPF6 salt (charge carrier) at 0, 0.5 M, and 1.0 M 
concentrations in the range of 1400-1000 cm-1. Dark yellow: MeCN; Blue: 0.5 M TBAPF6/MeCN; 
Red: 1.0 M TBAPF6/MeCN.



Figure S6. The FTIR spectra of the samples #0-4: (a) from the catholyte side; and (b) from the 
anolyte side.  



Scheme S1. Derivation of the linear relationship between the transmittance (T) 
and [PTIO]. 

The real transmittance (Treal) and the concentration ([PTIO]) of PTIO satisfy the Beer-Lambert 
Law (Equation S1): 

                                                                                 (S1)‒ 𝑙𝑜𝑔(𝑇𝑟𝑒𝑎𝑙) = 𝜀𝑏[𝑃𝑇𝐼𝑂]

where ε is the absorptivity coefficient and b is the path length. Because the supporting electrolyte 
of 1.0 M TBAPF6/MeCN is the spectral background, the Treal of PTIO can be calculated by the 
nominal transmittance (T) divided by the electrolyte background transmittance (T0) in the FTIR 
spectra (Equation S2). 

                                                                                                         (S2)
𝑇𝑟𝑒𝑎𝑙=

𝑇
𝑇0

Thus, from Equations S1 and S2, we can derive Equation 1 in the main text: 

                                                                     (1)‒ 𝑙𝑜𝑔⁡(𝑇)= 𝜀𝑏[𝑃𝑇𝐼𝑂] ‒ 𝑙𝑜𝑔⁡(𝑇0)


