Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation

Ruirui Zhang,†LinHu, * Shouxin Bao,†Ran Li,†Lei Gao, * Ren Li,†Qianwang Chen*†*

[†]Hefei National Laboratory for Physical Sciences at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, China.
[‡]High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.

*To whom correspondence should be addressed. Telephone: +86-551-63607251. Fax: +86-551-63603005. E-mail: <u>cqw@ustc.edu.cn</u>

Computational methods: The Vienna AB-initio Simulation Package (VASP) code has been used for our calculations¹. This code solves the Kohn-Sham equations of density functional theory (DFT) using a plane-wave basis set and the projector augmented wave (PAW) method². The exchange and correlation effects were calculated by the generalized gradient approximation in the formulation of Perdew-Wang-91. To ensure the accuracy of the calculated results, the cutoff energy was set to 400 eV for the plane-wave expansion of the electronic wave function. All structures were optimized with a convergence criterion of 1×10^{-5} eV for the energy and 0.01eV/Å for the forces.

Two models contain 4 layers of Cu (200) and an in-plane periodicity of (4*4) Cu₂O layer or CuO layer, which are built for representing the oxidized surface and insitu obtained copper oxide according to our HRTEM image. The Gama scheme with 5x5x1 K point mesh is used to represent the Brillouin zone.

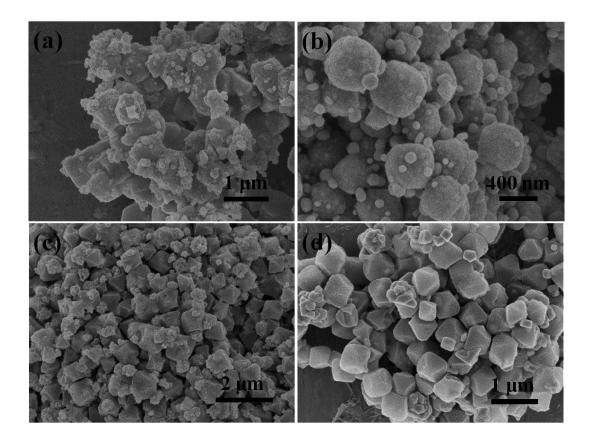


Fig. S1 SEM images of Cu-BTC annealed at: (a) 350 °C (b) 400 °C (c) 600 °C (d) 700 °C

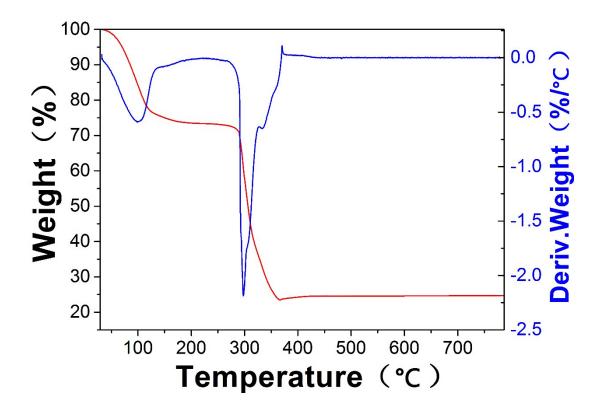


Fig. S2 TG-DTA curves of Cu-BTC under a flow of N_2 with a heating rate of 20°C min⁻¹.

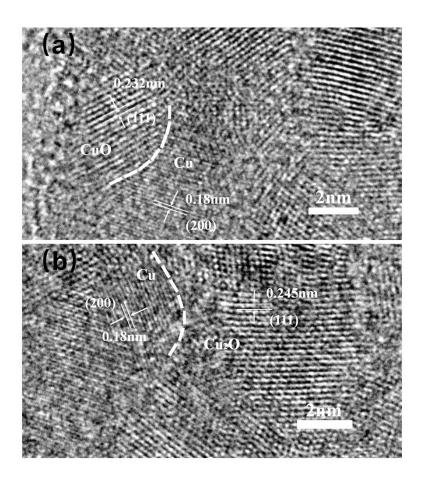


Fig. S3 HRTEM images of (a) Cu-CuO interface; (b) Cu-Cu₂O interface

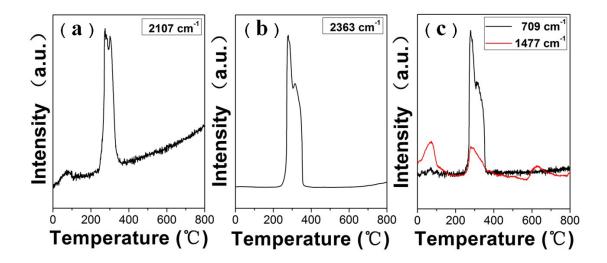


Fig. S4 IR absorbance variation of (a) CO, (b) CO_2 , (c) C_6H_6 as a function of temperature.

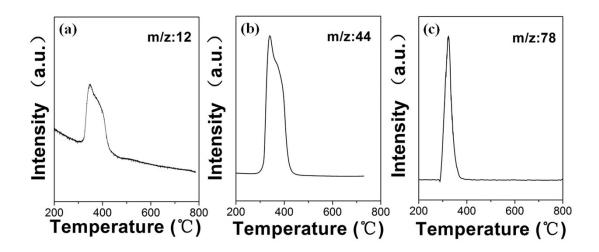


Fig. S5 MS intensity variation of (a) CO, (b) CO_2 , (c) C_6H_6 as a function of temperature.

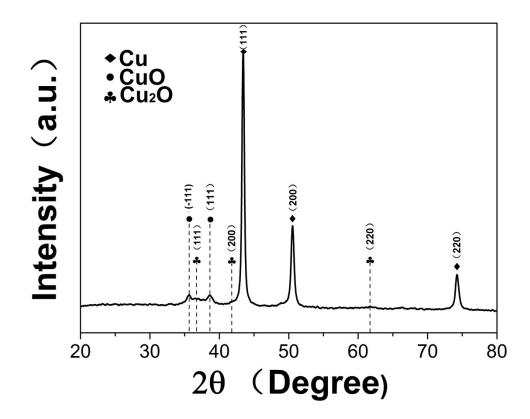
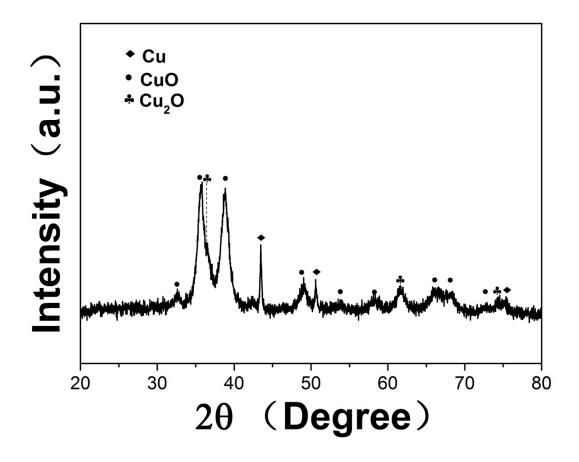
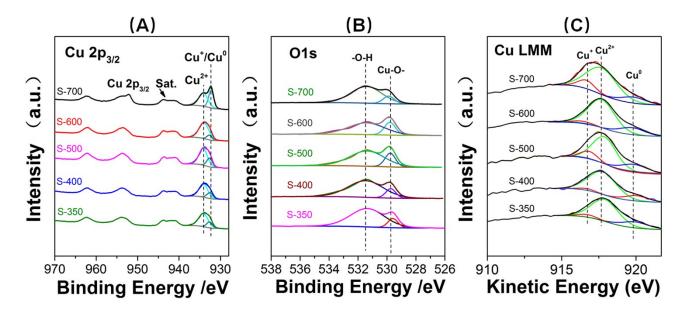



Fig. S6 XRD patterns of the as-prepared sample obtained at 500° C


Fig. S7 XRD patterns of the as-prepared sample after being tested in 1% CO with space velocity of 36,000 mL g⁻¹ h⁻¹ at the temperature of 155°C for 48h

Catalyst	CO/%	T ₁₀₀ /℃	Ref.				
Cu ₂ O	1	>240	Angew. Chem. Int. Ed.,2011, 50 , 12294–12298				
Cu ₂ O	1	>220	J. Mater. Chem. A, 2013, 1, 282–287				
CuO	4	>183	J. Mater. Chem. A, 2015, 3 , 3627–3632				
Cu ₂ O/CuO composite	3.7	>240	J. Mater. Chem. A, 2015, 3 , 5294–5298				
S-500	1	155	This work				
S-500	5	155	This work				

Table 1 Performance of S-500 and reported literatures

XPS

Deconvolution of the original Cu LMM peaks were performed, obtaining three symmetrical peaks centered at near 916.7, 917.8 and 919.8 eV, corresponding to Cu⁺, Cu²⁺ and Cu⁰ species, respectively.³⁻⁶ The deconvolution results were listed in Table 2.

Fig. S8 X-ray photoelectron (A, B) and Auger spectra (C) of the samples annealed at different temperatures.

Sample	S-350		S-400		S-500		S-600		S-700	
	K.E.[eV]	At.%								
Cu ⁰	919.93	19.34	920.13	15.35	919.87	19.45	919.74	19.76	919.85	13.15
Cu^+	916.75	3.29	916.78	3.55	916.85	14.07	916.39	9.6	916.66	12.65
Cu^{2+}	917.91	77.37	917.83	81.1	917.88	66.48	917.69	70.63	917.69	74.21

Table 2. Summary of the Cu LMM peak-fitting results

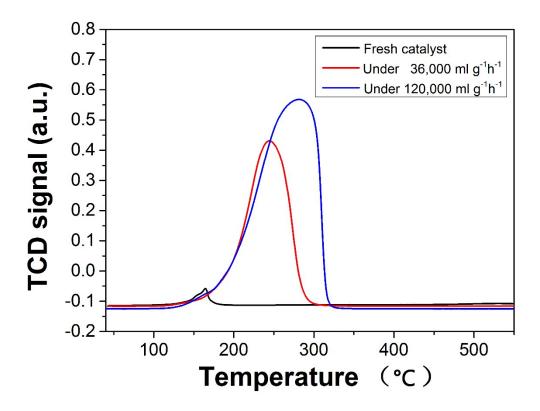
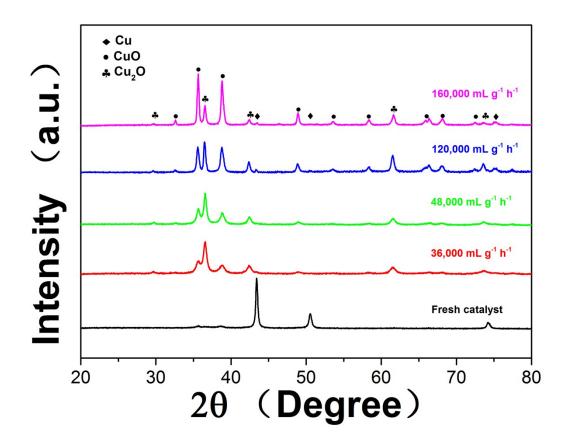



Fig. S9 TPR profiles of fresh S-500 and used at different space velocities

Fig. S10 XRD patterns of fresh catalyst and spent catalysts at the three space velocities

REFERENCES

- 1. F. J. Kresse G, Computational Materials Science, 1996, 6, 15-50.
- 2. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 3. J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng and X. Du, *Scientific reports*, 2014, 4, 7240
- 4. J. Słoczyński, R. Grabowski, P. Olszewski, A. Kozłowska, J. Stoch, M. Lachowska and J. Skrzypek, *Applied Catalysis A: General*, 2006, **310**, 127-137.
- 5. Y.-W. Suh, S.-H. Moon and H.-K. Rhee, *Catalysis today*, 2000, **63**, 447-452.
- 6. J.-S. Tsay, A. Yang, C. Wu and F. Shiu, *Surface Science*, 2007, **601**, 4265-4269.