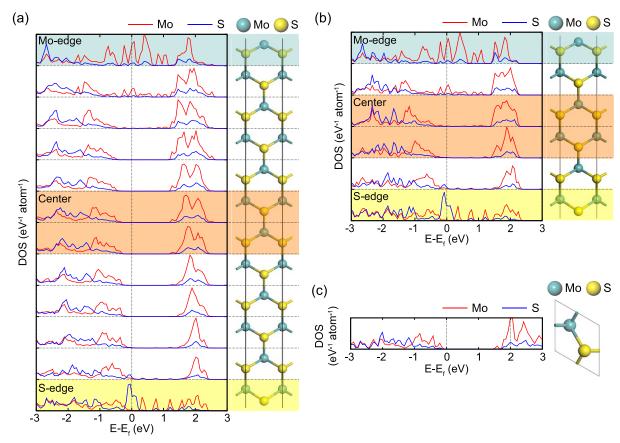
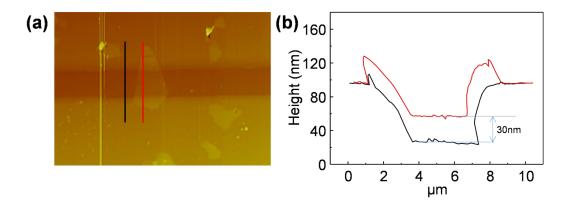
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

## **Supporting Information**

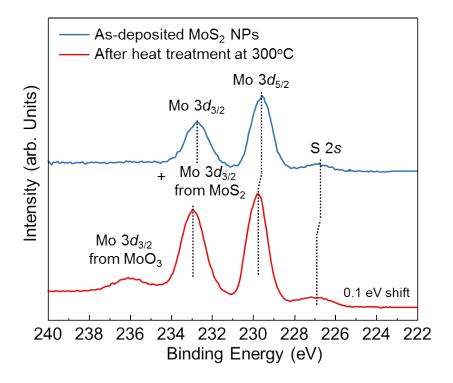

## Ultrasensitive Reversible Oxygen Sensing in Liquid-Exfoliated MoS<sub>2</sub> Nanoparticles.

Yeon Hoo Kim,‡<sup>a</sup> Kye Yeop Kim, ‡<sup>a</sup> You Rim Choi,<sup>a</sup> Young-Seok Shim,<sup>a</sup> Jong-Myeong Jeon,<sup>a</sup> Jong-Heun Lee,<sup>b</sup> Soo Young Kim,<sup>c</sup> Seungwu Han\*,<sup>a</sup> and Ho Won Jang\*,<sup>a</sup>

- <sup>a.</sup> Department of Materials Science and Engineering, Research Institute for Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea, E-mail: hansw@snu.ac.kr, hwjang@snu.ac.kr
- <sup>b.</sup> Department of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea
- <sup>c.</sup> School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
- \*Corresponding authors: hwjang@snu.ac.kr, hansw@snu.ac.kr


Table S1. Effects of oxygen-deficient exposure.1

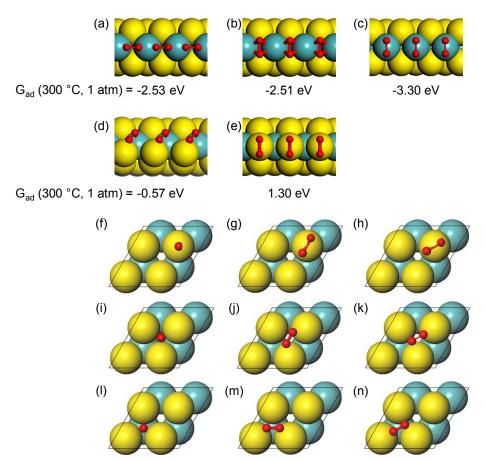
| Oxygen concentration (% vol) | Health effects of persons at rest                                                                                                                                                                  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 19                           | Some adverse physiological effects occur, but they may not be noticeable.                                                                                                                          |  |  |  |
| 15–19                        | Impaired thinking and attention. Increased pulse and breathing rate. Reduced coordination. Decreased ability to work strenuously. Reduced physical and intellectual performance without awareness. |  |  |  |
| 12–15                        | Poor judgment. Faulty coordination. Abnormal fatigue upon exertion. Emotional upset.                                                                                                               |  |  |  |
| 10–12                        | Very poor judgment and coordination. Impaired respiration that may cause permanent heart damage. Possibility of fainting within a few minutes without warning. Nausea and vomiting.                |  |  |  |
| below 10                     | Inability to move. Fainting almost immediate. Loss of consciousness. Convulsions. Death.                                                                                                           |  |  |  |




**Figure S1.** Density of states of each layer for MoS<sub>2</sub> flakes with widths of (a) 12 unit cells and (b) 6 unit cells, and (c) bulk MoS<sub>2</sub> layer of infinite unit cells.

Figure S1 shows the density of states (DOS) of each layer for MoS<sub>2</sub> flakes with widths of 12 unit cells (uc) and 6 uc, and bulk MoS<sub>2</sub> layer of infinite uc. 12 uc and 6 uc models have the Moterminated edge on the top, the S-terminated edge on the bottom and bulk-like uc at the center. The DOS of Mo- and S-terminated edges of 12 uc and 6 uc models are exactly same. Also the center uc of 12 uc and 6 uc models are almost same electronic structure as the bulk. Therefore, we suggest that 6 uc model is enough to investigate the sensing mechanism.

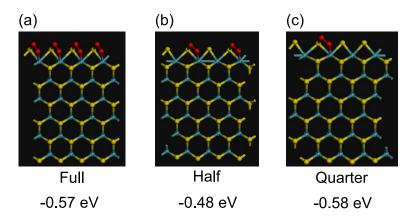



**Figure S2.** (a) AFM image and (b) height profiles of mechanically exfoliated MoS<sub>2</sub> microflake deposited between Pt IDEs (red line) and Pt IDEs without the MoS<sub>2</sub> microflakes (black line).



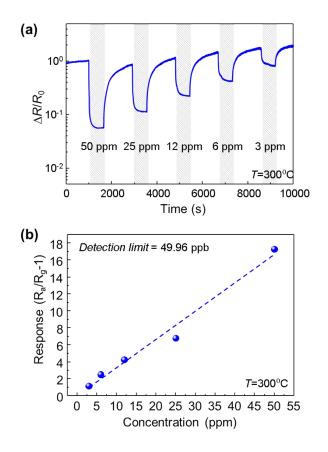
**Figure S3.** X-ray photoemission spectroscopy of as-deposited and after heat treatment liquid-exfoliated  $MoS_2$ .

Table S2. Gas sensing properties of different resistive oxygen gas sensors in the literatures.<sup>2-6</sup>


| Sensing material                         | Synthesis method           | Oxygen conc. | Response (S) | T <sub>sens</sub> (°C) | Ref.       |
|------------------------------------------|----------------------------|--------------|--------------|------------------------|------------|
| $MoS_2$                                  | Ultrasonication            | 100%         | 63.73        | 300                    | This study |
| ZrO <sub>2</sub> -doped CeO <sub>2</sub> | Wet-chemical precipitation | 100%         | ~ 1.1        | 800                    | 2          |
| $CeO_2$                                  | Spray-pyrolysis            | 100%         | ~3           | 800                    | 3          |
| Ga <sub>2</sub> O <sub>3</sub>           | Sputtering                 | 60%          | ~4.5         | 900                    | 4          |
| TiO <sub>2</sub>                         | Sputtering                 | 6000 ppm     | ~0.3         | 500                    | 5          |
| RBaCo <sub>2</sub> O <sub>5</sub>        | Solid state reaction       | 100%         | ~2           | 600                    | 6          |



**Figure S4.** (a-e) Stable sites of  $O_2$  adsorption.(a), (b) and (c) show locally stable configurations of  $O_2$  adsorbed on clean Mo-edge. (d) and (e) show  $O_2$  adsorption on Mo-edge with S monomer. The adsorption free energy at 300 °C and 1 atm  $[G_{ad}(300 \text{ °C}, 1 \text{ atm})]$  is displayed under each figure. (f-n) Considered  $O_2$  adsorption configurations on  $MoS_2$  clean surface: (f) vertical  $O_2$ , (g)  $O_2$  parallel to a axis, and (h)  $O_2$  parallel to a+b axis on S top, (i) vertical  $O_2$ , (j)  $O_2$  parallel to a axis, and (k)  $O_2$  parallel to a+b axis on FCC center and (l) vertical  $O_2$ , (m)  $O_2$  parallel to a axis, and (n)  $O_2$  parallel to a+b axis on HCP center.


Table S3. Adsorption free energy of oxygen molecule on MoS<sub>2</sub> clean surface

|                                        | (f)  | (g)  | (h)  |
|----------------------------------------|------|------|------|
| G <sub>ads</sub> (300°C, 1atm)<br>(eV) | 3.21 | 1.72 | 1.73 |



**Figure S5**. O<sub>2</sub> adsorption energy on Mo-S bridge sites of Mo-edges with S monomer: (a) full, (b) half and(c) quarter O<sub>2</sub> coverage.

 $O_2$  adsorption energy on Mo-S bridge sites of Mo-edge with S monomer was calculated depending on  $O_2$  coverage, defined as the ratio of the number of adsorbed oxygen to available adsorption sites. The adsorption free energy at 300 °C, 1 atm for  $O_2$  coverage of 1, 0.5, and 0.25 are -0.57, -0.48 and -0.58 eV, respectively. This simulation demonstrates the adsorption free energies are hardly affected by  $O_2$  coverage. Therefore, the concentration of  $O_2$  does not influence on the linear relationship in large oxygen concentration.



**Figure S6.** (a) Gas sensing transients of liquid-exfoliated MoS<sub>2</sub> to different C<sub>2</sub>H<sub>5</sub>OH concentration at 300°C. (b) Linear fit of responses as a function of C<sub>2</sub>H<sub>5</sub>OH concentration at 300°C.

## Reference

- 1. Air Products & Chemicals, "Safetygram #17; Dangers of oxygen-deficient atmosphe res", http://www.airproducts.com/Company/Sustainability/environment-health-and-safety/product-safety-safetygrams.aspx, **2005**.
- 2. C.-Y. Chen and K.-H. Chang, Sens. Actuators B, 2012, 162, 68-75.
- 3. C.-Y. Chen, K.-H. Chang, H.-Y. Chiang and S.-J. Shih, *Sens. Actuators B*, 2014, **2 04**, 31-41.
- 4. L.-T. Ju and S.-L. Ju, J. Ovonic. Res., 2012, 8, 73-79.
- 5. C.-C. Lu, Y.-S. Huang, J.-W. Huang, C.-K. Chang and S.-P. Wu, *Sensors*, 2010, **1 0**, 670-683.
- 6. H. Song, Z. Qin, F. Gao, J. Jia, D. Yang and X. Hu, Sens. Actuators B, 2013, 17 7, 50-54.