Supporting Information for

Facile synthesis of $\mathrm{Co}_{3} \mathbf{V}_{2} \mathrm{O}_{\mathbf{8}}$ interconnected hollow microsphere anode with superior high-rate capability for Li ion battery

Yanzhu Luo, ${ }^{\text {a,b }} \mathrm{Xu} \mathrm{Xu},{ }^{\text {a,c }}$ Xiaocong Tian, ${ }^{\text {a }}$ Qiulong Wei, ${ }^{a}$ Mengyu Yan, ${ }^{\text {a Kangning }}$ Zhao, ${ }^{\text {a }}$ Xiaoming $\mathrm{Xu},{ }^{\text {a }}$ and Liqiang Maia ${ }^{\mathrm{a}, *}$
a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. E-mail: mlq518@whut.edu.cn.
${ }^{\mathrm{b}}$ Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
${ }^{\text {c }}$ Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

Supplementary Figures

Fig. S1 Typical SEM images of the precursor particles obtained in solutions at step A.
(A) 0 min ; (B) 30 min ; (C) 60 min .

Fig. S2 Typical SEM images of the precursor particles obtained in solutions at step B (A-F). $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}-\mathrm{IHM}$ precursor particles: (A) 60 min ; (B) 90 min ; (C) 120 min ; (D) 180 min ; (E) $240 \mathrm{~min} . \mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-SMP precursor particles: (F) 240 min . Typical SEM images of the $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-IHM (G, H) and $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-SMP (I) precursor particles obtained in solutions after step C.

Fig. $\mathbf{S 3}$ Typical SEM images of $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}-\mathrm{IHM}(\mathrm{A})$ and $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}-\mathrm{SMP}(\mathrm{B}, \mathrm{C})$.

Fig. S4 XRD patterns of as-prepared precursor particles after hydrothermal reaction (step C).

Fig. S5 XPS spectra of the $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-IHM.

Fig. S6 The N_{2} adsorption-desorption isotherms of $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$ - IHM . The insets show the corresponding BJH pore size distribution curves.

Fig. S7 The corresponding first cycle voltage capacity profiles of $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-IHM (A) and $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-SMP (B) at different current densities during rate performance test.

Table S1 The data of EIS test of $\mathrm{Co}_{3} \mathrm{~V}_{2} \mathrm{O}_{8}$-IHM after different cycles.

Cycle Numbers	Before Cycle	$5^{\text {th }}$	$\mathbf{1 0}^{\text {th }}$	$\mathbf{2 0}^{\text {th }}$	$50^{\text {th }}$
$\mathbf{R}_{\mathrm{e}}(\Omega)$	4.1	5.9	4.9	8.5	9.5
$\mathbf{R}_{\mathrm{f}}(\Omega)$	-	0.1	0.45	1.2	1.4
$\mathbf{R}_{\mathrm{ct}}(\Omega)$	30.1	8.1	9.2	8.4	8.6

