Supporting information

Facile synthesis of metal-organic framework-derived Mn₂O₃ nanowires coated

three-dimensional graphene network for high-performance free-standing

supercapacitor electrodes

Dong Ji^a, Hu Zhou^{*,b}, Jian Zhang^a, Yuanyuan Dan^a, Hongxun Yang^a, Aihua Yuan^{*,a}

^aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

^bSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

Fig. S1 Raman spectrum of 3DGN with Ni.

Fig. S2 TG curve of the 3DGN/Mn₂O₃ composite.

Fig. S3 Powder XRD patterns of as-prepared and reported for Mn-BTC (left) and Mn₂O₃

(right).

Fig. S4 CV curves at different scan rates (left), and GCD curves at different current densities (right) of the Mn-BTC electrode material.

Fig. S5 CV curves at different scan rates (left), and GCD curves at different current densities

(right) of the Mn_2O_3 electrode material.

Fig. S6 CV curves at different scan rates (left), and GCD curves at different current densities

(right) of the 3DGN/Mn-BTC electrode material.

Fig. S7 CV curves at different scan rates (left), and GCD curves at different current densities

(right) of the 3DGN electrode material.

Fig. S8 GCD curves at 0.2 A g^{-1} of the 3DGN and 3DGN/Mn₂O₃ electrode materials.