Supporting Information for

Excellent energy – power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes

Huanlei Wang,^a David Mitlin,^{* b} Jia Ding,^c Zhi Li,^{*c} and Kai Cui^d

^a Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

^b Chemical & Biomolecular Engineering and Mechanical Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam NY 13699, USA

^c Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G
 2V4, Canada

^d National Institute for Nanotechnology (NINT), National Research Council of Canada, Edmonton, Alberta T6G 2M9, Canada

Email: dmitlin@clarkson.edu; lizhicn@gmail.com

Fig. S1 TG curves of the as obtained (a) SCN and (b) SCN-A at a heating rate of $10 \text{ }^{\circ}\text{C}$ min⁻¹ in air.

Fig. S2 (a) XPS survey spectra of SCN and SCN-A samples. High-resolution (b) C 1s and (c) O 1s spectra of samples SCN and SCN-A.

Fig. S3 Fitted Raman spectra of (a) SCN and (b) SCN-A specimens.

Fig. S4 SEM images of (a) SCN, and (b) SCN-A. The arrows indicate the possible position of the iron oxide.

Fig. S5 CV curves of SCN electrode between 0.01 and 3.0 V vs. Na/Na⁺, at a scan rate of 0.01 mV s⁻¹.

Fig. S6 Charge (blue) and discharge (red) curves of SCN-A electrodes in every fifth cycle between 0.01 and 3.0 V versus Na/Na⁺ at various current densities.

Table S1 A comparison with literature of the reversible capacities of state-of-art

Samples	Initial coulombic	Cyclability	Rate capability
	efficiency (%)		
Nitrogen-doped carbon nanosheets1	34.9	155.2 mAh g ⁻¹ at 260th cycle and 0.05 A g ⁻¹ ;	323.1 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
		80 mAh g ⁻¹ at 400th cycle and 1 A g ⁻¹ ;	88.9 mAh g ⁻¹ at 1 A g ⁻¹ ;
			50 mAh g ⁻¹ at 20 A g ⁻¹ ;
Hollow carbon nanospheres ²	41.5	~160 mAh g ⁻¹ at 100th cycle and 0.1 A g ⁻¹ ;	168 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
			120 mAh g ⁻¹ at 1 A g ⁻¹ ;
			50 mAh g ⁻¹ at 10 A g ⁻¹ ;
Hollow carbon nanowires ³	50.5	${\sim}206.3$ mAh g^{-1} at 400th cycle and 0.05 A g^{-1};	252 mAh g ⁻¹ at 0.05 A g ⁻¹ ;
			216 mAh g ⁻¹ at 0.25 A g ⁻¹ ;
			149 mAh g ⁻¹ at 0.5 A g ⁻¹ ;
Templated carbon ⁴	~20	\sim 120 mAh g ⁻¹ at 40th cycle and 0.074 A g ⁻¹ ;	\sim 140 mAh g ⁻¹ at 0.074 A g ⁻¹ ;
		${\sim}80$ mAh g^{-1} at 125th cycle and 0.074 A g^{-1};	${\sim}120$ mAh g ⁻¹ at 0.74 A g ⁻¹ ;
			${\sim}100$ mAh g^{-1} at 1.85 A g^{-1};
Highly disordered carbon ⁵	57.6	225 mAh g ⁻¹ at 180th cycle and 0.1 A g ⁻¹ ;	231 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
			102 mAh g ⁻¹ at 1 A g ⁻¹ ;
			18 mAh g ⁻¹ at 10 A g ⁻¹ ;
N-doped interconnected carbon	41.8	134.2 mAh g ⁻¹ at 200th cycle and 0.2 A g ⁻¹ ;	150 mAh g ⁻¹ at 0.2 A g ⁻¹ ;
nanofibers ⁶			132 mAh g ⁻¹ at 1 A g ⁻¹ ;
			87 mAh g ⁻¹ at 10 A g ⁻¹ ;
Carbon nanosheet7	57.5	255 mAh g ⁻¹ at 210th cycle and 0.1 A g ⁻¹ ;	204 mAh g ⁻¹ at 0.5 A g ⁻¹ ;
			150 mAh g ⁻¹ at 1 A g ⁻¹ ;
			66 mAh g ⁻¹ at 5A g ⁻¹ ;
Banana peel pseudographite8	67.8	298 mAh g^{-1} at 290th cycle and 0.1 A g^{-1} ;	290 mAh g ⁻¹ at 0.2 A g ⁻¹ ;
			155 mAh g ⁻¹ at 1 A g ⁻¹ ;
			70 mAh g ⁻¹ at 5A g ⁻¹ ;
N-doped ordered mesoporous	-	327.6 mAh g^{-1} at 45th cycle and 0.1 A g^{-1} ;	259 mAh g ⁻¹ at 0.2 A g ⁻¹ ;
carbon ⁹			157 mAh g ⁻¹ at 1 A g ⁻¹ ;
			98 mAh g ⁻¹ at 2A g ⁻¹ ;
Nitrogen-doped carbon nanotubes ¹⁰	< 30	no capacity fading between 60th and 160th at	167 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
		0.5 A g ⁻¹ ;	104 mAh g ⁻¹ at 0.5 A g ⁻¹ ;
			81 mAh g ⁻¹ at 1 A g ⁻¹ ;
Carbon bubbles ¹¹	52	209 mAh g^{-1} at 400th cycle and 0.1 A g $^{-1}$;	359 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
		122 mAh g ⁻¹ at 1000th cycle and 1 A g ⁻¹ ;	179 mAh g ⁻¹ at 0.5 A g ⁻¹ ;
			136 mAh g^{-1} at 2 A g^{-1} ;
Nitrogen-doped carbon sheets ¹²	26.4	165 mAh g^{-1} at 600th cycle and 0.2 A g^{-1} ;	212 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
			113 mAh g ⁻¹ at 1 A g ⁻¹ ;
			84 mAh g^{-1} at 5 A g^{-1} ;
Nitrogen-doped carbon sphere ¹³	39.9	206 mAh g ⁻¹ at 600th cycle and 0.2 A g ⁻¹ ;	237 mAh g ⁻¹ at 0.1 A g ⁻¹ ;

carbonaceous materials as anode for sodium ion batteries.

					184 mAh g ⁻¹ at 0.5 A g ⁻¹ ;
					155 mAh g ⁻¹ at 1 A g ⁻¹ ;
Hard carbon ¹⁴			62.8-69.2	352 mAh g $^{\text{-1}}$ at 200th cycle and 0.05 A g $^{\text{-1}}$;	317.7 mAh g ⁻¹ at 0.1 A g ⁻¹ ;
					78.3 mAh g ⁻¹ at 2 A g ⁻¹ ;
Peanut skin	derived	carbon	24.2-29.6	185 mAh g^{-1} at 1000th cycle and 0.5 A g^{-1} ;	198 mAh g ⁻¹ at 0.5 A g ⁻¹ ;
nanosheets					164 mAh g ⁻¹ at 1 A g ⁻¹ ;
(this work)					73 mAh g ⁻¹ at 10A g ⁻¹ ;

Fig. S7. Summary of capacity above and below 0.2V versus voltage for (a) SCN-A and (b) SCN electrodes (5th cycle at each current).

Fig. S8 Charge (blue) and discharge (red) curves of SCN at various current densities, tested between 2.7 and 4.2 V versus Na/Na⁺.

Fig. S9 The coulombic efficiency of SCN and SCN-A cathodes during the rate capability measurements shown in Figure 4a.

Fig. S10 CV curves of SCN-A//SCN-A hybrid Na-ion capacitors with different cathode to anode mass ratios, tested at 20 mV s⁻¹.

Fig. S11 (a) Nyquist plots of Na-ion capacitors with anode to cathode mass ratio of 1:2 before test, after 1000 cycles and after 3000 cycles. (b) Equivalent circuit used for fitting the experimental data. R_s is the total resistance of electrolyte, electrode, current collector and separator. R_{ct} is the charge transfer resistance. CPE_1 represents a capacitance element coupled with R_{ct} , typically assigned to the double layer capacitance or chemical capacitance. Z_w is the Warburg impedance related to the diffusion of lithium ions into the bulk electrode.

References

- H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang and X. B. Zhang, *ChemSusChem*, 2013, 6, 56-60.
- K. Tang, L. J. Fu, R. J. White, L. H. Yu, M. M. Titirici, M. Antonietti and J. Maier, *Adv. Energy Mater.*, 2012, 2, 873-877.
- Y. L. Cao, L. F. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. M. Nie,
 L. V. Saraf, Z. G. Yang and J. Liu, *Nano Lett.*, 2012, 12, 3783-3787.
- 4. S. Wenzel, T. Hara, J. Janek and P. Adelhelm, *Energy Environ. Sci.*, 2011, 4, 3342-3345.
- 5. X. S. Zhou and Y. G. Guo, *ChemElectroChem*, 2014, 1, 83-86.
- Z. H. Wang, L. Qie, L. X. Yuan, W. X. Zhang, X. L. Hu and Y. H. Huang, *Carbon*, 2013, 55, 328-334.
- J. Ding, H. L. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. W. Xu, B. Zahiri, X. H. Tan, E. M. Lotfabad, B. C. Olsen and D. Mitlin, *ACS Nano*, 2013, 7, 11004-11015.
- E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton and D. Mitlin, *ACS Nano*, 2014, 8, 7115-7129.
- 9. Z. G. Wang, Y. M. Li and X. J. Lv, *RSC Adv.*, 2014, 4, 62673-62677.
- D. D. Li, L. Zhang, H. B. Chen, L. X. Ding, S. Q. Wang and H. H. Wang, *Chem. Commun.*, 2015, **51**, 16045-16048.
- G. Z. Yang, H. W. Song, H. Cui and C. X. Wang, J. Mater. Chem. A, 2015, 3, 20065-20072.
- F. H. Yang, Z. A. Zhang, K. Du, X. X. Zhao, W. Chen, Y. Q. Lai and J. Li, *Carbon*, 2015, 91, 88-95.
- D. D. Li, H. B. Chen, G. X. Liu, M. Wei, L. X. Ding, S. Q. Wang and H. H. Wang, *Carbon*, 2015, 94, 888-894.
- 14. N. Sun, H. Liu and B. Xu, J. Mater. Chem. A, 2015, 3, 20560-20566.