Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

A conductive polymer coated MoO₃ anode enables an Al-ion capacitor with high performance

Faxing Wang,^{a,c,#} Zaichun Liu,^{b,#} Xiaowei Wang,^b Xinhai Yuan,^c Xiongwei Wu,^{b,*} Yusong Zhu, ^b Lijun Fu,^{b,*} and Yuping Wu, ^{a,b,c,*}

^a College of Energy and Institute for Electrochemical Energy Storage, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China

^b College of Science, Hunan Agriculture University, Changsha, Hunan 410128, China

^cNew Energy and Materials Laboratory (NEML), Department of Chemistry, Fudan University, Shanghai 200433, China

Supplementary figures:

Fig. S1Thermogravimetic analysis of the MoO₃ nanotubes under air.

Fig. S2 (**a**) TEM micrograph of the MoO₃ nanotubes, and (**b**) SAED pattern for PPy layer. Scale bar, 200 nm (**a**), 100nm (inserted in **a**)

Fig. S3 CV curves of (a) AC at different scan rate and (b) MoO_3 nanotubes in 0.5 mol l-1 $Al_2(SO_4)_3$ electrolyte at 5 mV s⁻¹.

Fig. S4 Change of capacitance with current densities for MoO₃ nanotubes.

Fig. S5 b-value determination from the peak currents..

Fig. S6 Typical charge/discharge curves of the individual electrode (AC and PPy@MoO₃).

Fig. S7 Change of capacitance with current densities for the Al-ion capacitor $(PPy@MoO_3//AC)$. The capacitance and energy density were calculated based on the total mass of cathode and anode materials.

Fig. S8 The Coulombic efficiency of the Al ion capacitor based on PPy@MoO₃ as the anode at 2 A g^{-1} .