Supporting Information Available

Graphene-Porous Carbon-Pd/SnO₂ Nanocomposite with Enhanced Electrocatalytic Activity and Durability for Methanol Oxidation

Lirui Nan, Zetan Fan, Wenbo Yue,* Qiao Dong, Lisha Zhu, Liu Yang, and Louzhen Fan*

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

* Corresponding author

Yue WB, Fax: +86 (0)10 58802075; Tel: +86 (0)10 58804229; E-mail: <u>wbyue@bnu.edu.cn</u> Fan LZ, E-mail: lzfan@bnu.edu.cn

Experimental Section

Preparation of G-mSiO₂

G-mSiO₂ was synthesized using Cetyltrimethylammonium bromide (CTAB) as the template. In a typical synthesis, 0.03 g of GO was dispersed in 100 mL of deionized water, and 0.04 g of NaOH and 1 g of CTAB were then added into this GO solution by ultrasonication for 2 h. Subsequently, the solution was heated at 40 °C and 1 mL of TEOS was dropwise added into the solution. After stirring for 12 h, the suspension was transferred into a 100 mL Teflon-lined stainless steel autoclave and heated at 100 °C for 3 days. The precipitate was collected by centrifugation, washed with deionized water, and dried at 60 °C. The dried powder was further heated under N₂ atmosphere at 900 °C for 3 h to completely remove CTAB template. Finally, G-mSiO₂ was obtained after cooling down to room temperature.

Preparation of CMK-3 and G-mC

CMK-3 was synthesized using SBA-15 as the template, and sucrose as the carbon source. In brief, 1.25 g of sucrose and 0.14 g of H_2SO_4 were dissolved in 5 g of H_2O and 1 g of SBA-15 was added to this

solution. After stirring for 0.5 h, the mixture was heated at 100 °C for 6 h and subsequently at 160 °C for another 6 h. The resulting product was impregnated again with an aqueous solution consisting of 0.8 g of sucrose, 0.09 g of H_2SO_4 and 5 g of H_2O . After heat treatment at 100 °C and 160 °C, the mixture was carbonized at 900 °C for 3 h under N₂ protection. Finally, CMK-3 was obtained by the removal of the silica template using a 10 wt% HF solution at room temperature, and collected by centrifugation, washed with deionized water, and dried at 60 °C.

G-mC was synthesized using G-mSiO₂ as the template,¹ and sucrose as the carbon source, which is similar to the preparation of CMK-3 except G-mSiO₂ instead of SBA-15.

1 Z. M. Wang, W. D. Wang, N. Coombs, N. Soheilnia and G. A. Ozin, ACS Nano, 2010, 4, 7437–7450.

Fig. S1 TEM images of (A) G-mSiO₂ and (B) G-mC. (C) Pd 3d XPS spectrum of G-mC-Pd/SnO₂ prepared without using NaBH₄. (D) SEM image of the cross-section of G-mC.

Fig. S2 TEM-EDX mapping: (A) TEM image of G-mC-Pd/SnO₂ and (B–E) corresponding EDX mapping images of C, O, Pd and Sn elements, respectively.

Carbon supports

The porosities of CMK-3, CMK-3-Pd/SnO₂, G-mC and G-mC-Pd/SnO₂ were investigated by N₂ adsorption/desorption technique. The isotherms of CMK-3 and G-mC (Fig. S3A and S3C) show type IV curves with a H1 hysteresis loop, and the pore size distributions (Fig. S3B and S3D) show only one peak at about 3.6 and 2.6 nm, indicating that CMK-3 and G-mC are mesoporous carbons with uniform pore structure. Fig. S4 shows the TGA curves of G-mSiO₂ and G-mSiO₂-C (G-mSiO₂ containing carbon inside the pores), indicating that the contents of porous SiO₂ in G-mSiO₂ and G-mSiO₂-C are ~93.5 and ~57.5 wt%, respectively. Accordingly, the weight ratio of porous carbon to graphene is calculated to be ~9.6. After loading of Pd & SnO₂ nanoparticles, the surface areas of CMK-3 and G-mC decrease from ~1138 and ~1068 m² g⁻¹ to ~717 and ~445 m² g⁻¹, and the pore volumes decrease from ~1.20 and ~0.71 cm³ g⁻¹, to ~0.56 and ~0.38 cm³ g⁻¹, respectively, but the pore sizes do not change. Considering the weight of Pd & SnO₂ (~26.0 wt% for CMK-3-Pd/SnO₂ and ~23.8 wt% for G-mC-Pd/SnO₂), the pore volumes of CMK-3 and G-mC should be ~0.89 and ~0.54 cm³ g⁻¹ respectively after loading Pd & SnO₂ nanoparticles, much higher than those of CMK-3-Pd/SnO₂ (~0.56 cm³ g⁻¹) and G-mC-Pd/SnO₂(~0.38 cm³ g⁻¹), implying that the pores of CMK-3 and G-mC are occupied by Pd & SnO₂ nanoparticles. The BET surface areas, pore sizes and pore volumes of CMK-3, CMK-3-Pd/SnO₂, G-mC and G-mC-Pd/SnO₂ are displayed in Table **S1**.

Fig. S3 N₂ adsorption/desorption isotherms and the pore size distributions of (A, B) CMK-3 and CMK-3-Pd/SnO₂, (C, D) G-mC and G-mC-Pd/SnO₂.

Fig. S4 TGA curves of G-mSiO₂ and G-mSiO₂-C.

Sample	Pore size / nm	Pore volume / cm ³ g ⁻¹	Surface area / m ² g ⁻¹
CMK-3	3.6	1.20	1138
CMK-3-Pd/SnO ₂	3.6	0.56	717
G-mC	2.6	0.71	1068
G-mC-Pd/SnO ₂	2.6	0.38	445

Table S1. Structural parameters of CMK-3, CMK-3-Pd/SnO₂, G-mC and G-mC-Pd/SnO₂.

Table S2. Mean particle sizes and contents of Pd & SnO2 in CMK-3-Pd/SnO2, G-mC-Pd/SnO2, G-mC-Pd,Pd/C and their ECSA, onset potential, forward peak current density (I_f), I_f/I_b ratio, R_{ct} values.

Sample	CMK-3-Pd/SnO ₂	G-mC-Pd/SnO ₂	G-mC-Pd	Pd/C
Particle size of Pd & SnO ₂ / nm	4.6±0.3	2.4±0.1	2.6±0.2	5~7
Pd content / wt%	21.2	19.5	18.8	30
SnO_2 content / wt%	4.8	4.3	N/A	N/A
$ECSA / cm^2 mg^{-1}$	73.0	116.5	53.0	64.8
Onset potential / V	-0.40	-0.56	-0.38	-0.39
$I_{\rm f}$ / mA cm ⁻²	5.59	7.81	4.59	4.24
$I_{\rm f}/I_{\rm b}$	6.9	21.0	4.9	2.78
$R_{ m ct}$ / Ω	23.6	4.9	4.2	33.8

Electrocatalytic performance comparison

The electrocatalytic performance of reported carbon-supported Pd composites is shown in **Table S3** and compared with that of G-mC-Pd/SnO₂. The carbon supports include multiwall carbon nanotube (MWCNT), carbon nanotube (CNT), Vulcan XC 72 (Vulcan), polypyrrole-functionalized graphene (PPy-graphene) and polyvingl pyrrolidone-functionalized graphene (PVP-graphene). Compared to most of reported carbon-supported Pd composites, G-mC-Pd/SnO₂ shows superior electrocatalytic performance, especially good cycling stability. The electrocatalytic activity retention of G-mC-Pd/SnO₂ is maintained at ~85% after 500 cycles, which is not reported previously.

 Table S3. The electrocatalytic performance of reported carbon-supported Pd composites and G-mC-Pd/SnO2.

Sample	ECSA	$I_{ m f}$	$I_{\rm f}/I_{\rm b}$	$I_{\rm f}$ retention	Ref
Pd/MWCNT	$31.6 \text{ m}^2 \text{ g}^{-1}$	0.16 mA cm^{-2}	N/A	N/A	1
Pd/CNT	$32.9 \text{ m}^2 \text{ g}^{-1}$	19.0 mA cm^{-2}	2.7	N/A	2
Pd/Vulcan	N/A	2.6 mA cm^{-2}	N/A	99.6 % (100th)	3
Pd/ PPy-graphene	$35.9 \text{ m}^2 \text{ g}^{-1}$	265.8 A g ⁻¹ Pd	4.9	N/A	4
Pd/PVP-graphene	$23.2 \text{ m}^2 \text{ g}^{-1}$	1.1 mA cm^{-2}	N/A	91.6% (50th)	5
G-mC-Pd/SnO ₂	$11.6 \text{ m}^2 \text{ g}^{-1}$	7.8 mA cm^{-2}	21.0	85.0% (500th)	This work

References

- H. An, L. N. Pan, H. Cui, B. J. Li, D. D. Zhou, J. P. Zhai and Q. Li, *Electrochim. Acta*, 2013, **102**, 79–87.
- X. L. Yang, M. M. Zhen, G. Li, X. Z. Liu, X. Y. Wang, C. Y. Shu, L. Jiang and C. R. Wang, *J. Mater. Chem. A*, 2013, 1, 8105–8110.
- 3 H. Y. Sun, X. L. Jiao, H. Y. Wang, Z. Jiang and D. R. Chen, ACS Appl. Mater. Interfaces, 2011, 3, 2425–2430.

- 4 Y. C. Zhao, L. Zhan, J. N. Tian, S. L.Nie and Z. Ning, *Electrochim. Acta*, 2011, **56**, 1967–1972.
- 5 Y. T. Zhang, H. H. Shu, G. Chang, K. Ji, M. Oyama, X. Liu and Y. B. He, *Electrochim. Acta*, 2013, 109, 570–576.