Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Facile and elegant self-organization of Ag nanoparticles and TiO_2 nanorods on V_2O_5 nanosheets as a superior cathode material of lithium-ion batteries

Du-Juan Yan, ^cXiao-Dong Zhu, ^{a,b,} *Ke-Xin Wang, ^cXiao-Tian Gao, ^cYu-JieFeng, ^aKe-NingSun^{a,b,} * and Yi-Tao

Liu^{d,}*

^aState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology,

Harbin 150090, China.

^bAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology,

Harbin 150080, China.

^cDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, China.

^dState Key Laboratory of Precision Measurement Technology and Instruments,

Department of Precision Instrument, Tsinghua University, Beijing 100084, China.

*Corresponding Authors.

E-mail addresses: zxd9863@163.com, keningsunhit@126.com, liu-yt03@mails.tsinghua.edu.cn.

Fig. S1–XRD pattern of V_2O_5 nanosheets.

Fig. S2– HRTEM image of V_2O_5 nanosheets revealing lattice fringe distances of 0.44 and 0.34 nm corresponding to the (001) and (110) planes of V_2O_5 (*Nano Lett.*, 2010, **10**, 4750; *Small*, 2014, **10**, 3032; *Nanoscale*, 2013, **5**, 556).

Fig. S3– AFM image of V_2O_5 nanosheets and the corresponding height profile. This image reveals V_2O_5 nanosheets with a lateral size on the micrometer scale and a thickness of 16.4 nm, corresponding to an aspect ratio of ~200. This morphology (with relatively smooth surfaces) is in good agreement with what is observed under TEM and SEM, confirming the successful exfoliation of V_2O_5 nanosheets.

Fig. S4–XRD pattern of Ag nanoparticles.

Fig. S5–XRD pattern of TiO₂ nanorods.

Fig. S6– SEM images of Ag/V_2O_5 hybrid architectures at weight ratios of (a) 10 : 100 and (b)20 : 100.

Fig. S7– SEM images of TiO_2/V_2O_5 hybrid architectures at weight ratios of (a) 10 : 100 and (b)20 : 100.

Fig. S8– (a) TEM image of $Ag-TiO_2/V_2O_5$ hybrid architectures and corresponding EDS maps of elemental

(b) V, (c) Ti and (d) Ag.

Fig. S9– Initial three CV curves of neat V_2O_5 nanosheets.

Fig. S10– Initial three CV curves of Ag/V_2O_5 hybrid architectures.

Fig. S11– Initial three CV curves of TiO_2/V_2O_5 hybrid architectures.

Fig. S12– Cycle behaviours of TiO_2/V_2O_5 hybrid architectures (10/100,15/100 and 20/100) at a current density of 100 mA g⁻¹.

Fig. S13– Cycle behaviours of Ag–TiO₂/V₂O₅ hybrid architectures (5/15/100 and 10/10/100) at a current density of 100 mA g^{-1} .

 $\label{eq:Fig.S14-Coulombic efficiencies of Ag/V_2O_5, TiO_2/V_2O_5 and Ag-TiO_2/V_2O_5 hybrid architectures as well as$

neat V_2O_5 nanosheets.

Table S1. Elemental composition of Ag/V_2O_5 (5/100), TiO_2/V_2O_5 (15/100) and $Ag-TiO_2/V_2O_5$ (5/15/100) hybrid architectures.

	Ag	Ti	V	Octadecylamine-	Oleylamine-coat	V_2O_5	Complea
	(wt%)	(wt%)	(wt%)	coated Ag (wt%)	ed TiO ₂ (wt%)	(wt%)	Samples
Actual ratio	4.26	—	53.25	4.81	—	95.01	Ag/V ₂ O ₅
Starting ratio	—	—	—	4.76	—	95.24	(5/100)
Actual ratio		6.22	48.32	_	12.50	86.22	TiO ₂ /V ₂ O ₅
Starting ratio	—	_	—	—	13.04	86.96	(15/100)
Actual ratio	3.67	6.08	46.88	4.15	12.21	83.65	Ag-TiO ₂ /V ₂ O ₅
Starting ratio	_		_	4.17	12.50	83.33	(5/15/100)