Electronic Supplementary Information (ESI) for

Highly-Ordered Polypyrrole Coated Co(OH)₂ Architectures for High-Performance Asymmetric Supercapacitors

Jun Seop Lee ^{a,b II}, Dong Hoon Shin^{a II}, Wooyoung Kim^a, and Jyongsik Jang^a*

^a School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea). Fax: +82-2-888-7295; Tel: 82-2-880-8348; *e-mail: <u>jsjang@plaza.snu.ac.kr</u>

^b Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, (USA)

^{II} These authors contributed equally to this work.

Figure S1. Selected area electron diffraction (SAED) pattern of Co(OH)₂NSs.

Figure S2. X-ray diffraction (XRD) pattern of $Co(OH)_2$ architectures and pristine carbon cloth (black: pristine carbon cloth; red: $Co(OH)_2MP$; blue: $Co(OH)_2MF$; green: $Co(OH)_2NS$).

Figure S3. Calculated gravimetric capacitance (F g^{-1}) of each electrode for various scan rates (10 to 200 mV s^{-1}).

Figure S4. (a) Schematic diagram of asymmetric supercapacitors (ASCs) composed of two different electrodes $(Co(OH)_2@PPy: positive; CNTMN: negative)$ and polymer-gel electrolyte. (b) Low- and (c) high-magnification of FE-SEM images of the CNTMN decorated carbon cloth.

Figure S5. Digital photographs of (a) flat-, (b) bended-, and (c) twisted-ASCs.

Figure S6. Volumetric (left) and gravimetric (right) capacitances of the ASCs calculated from the galvanostatic charge-discharge curves as a function of current density.

7. Real application of the ASCs

Figure S7. Blue light-emitting diode (LED) powered by the fabricated ASC.

Figure S8. CV curves (scan rate: 50 mV s⁻¹) of ASCs for various deformations (black: flat; red: bend; blue: twist).