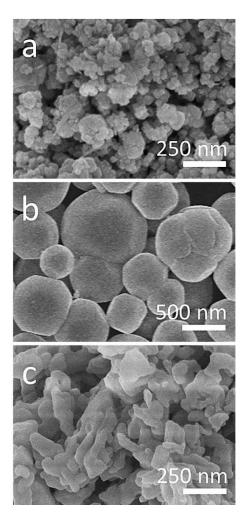
Nanoporous Mn-Based Electrocatalysts through Thermal

Conversion of Cyano-Bridged Coordination Polymers toward Ultra-High Efficient Hydrogen Peroxide Production


Mohamed B. Zakaria^{1,2,3}, Cuiling Li^{2*}, Malay Pramanik², Yoshihiro Tsujimoto⁴, Ming Hu⁵, Victor Malgras², Satoshi Tominaka², and Yusuke Yamauchi*^{1,2,6}

- 1 Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan.
- World Premier International (WPI) Research Center for Materials Nanoarchitechtonics (MANA),

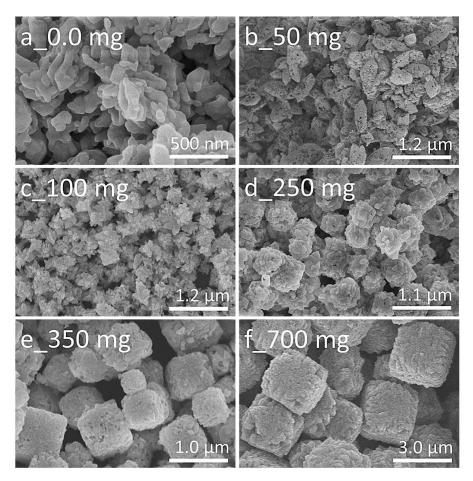
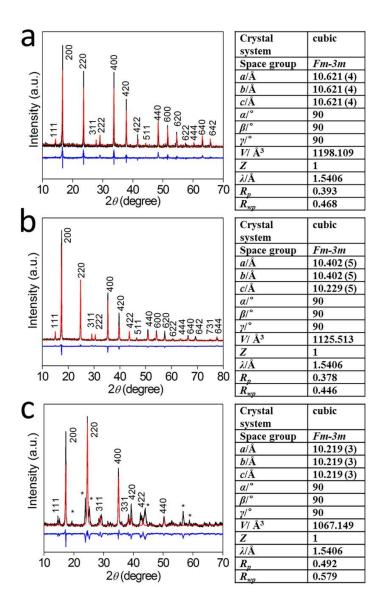
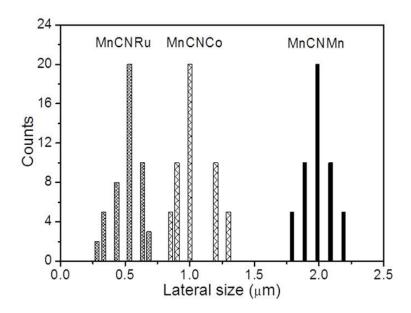
 National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- 3 Department of Chemistry, Faculty of Science, Tanta University, Tanta, Gharbeya 31527, Egypt.
- 4 Materials Processing Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
- 5 Department of Physics, East China Normal University, Physical Building, 500 Dongchuan Road, Shanghai, China
- 6 Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW 2005, Australia

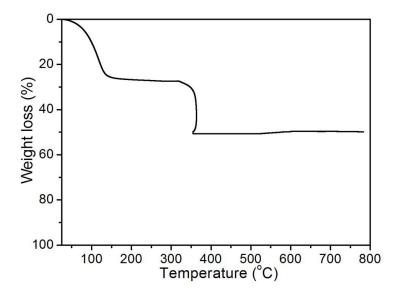
E-mails: LI.Cuiling@nims.go.jp; Yamauchi.Yusuke@nims.go.jp

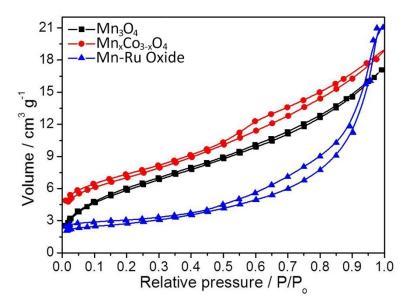
Homepage: http://www.yamauchi-labo.com

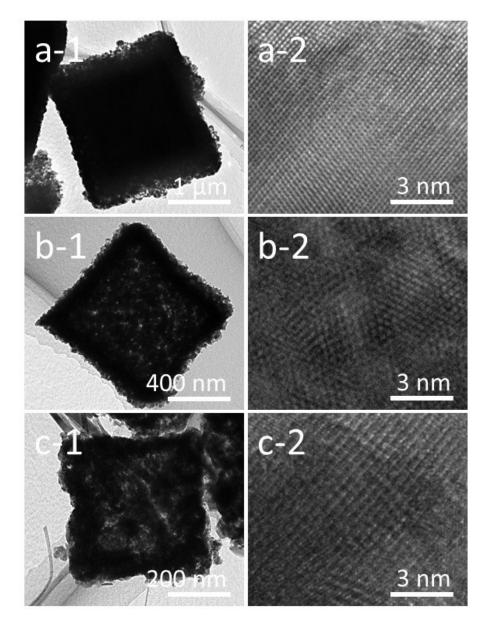
Figure S1 SEM images of the (a) MnCNMn, (b) MnCNCo, and (c) MnCNRu PBAs, prepared in the absence of TSCD.

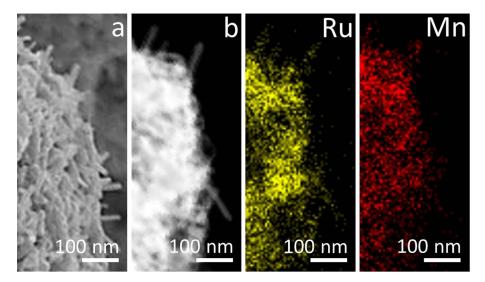
Figure S2

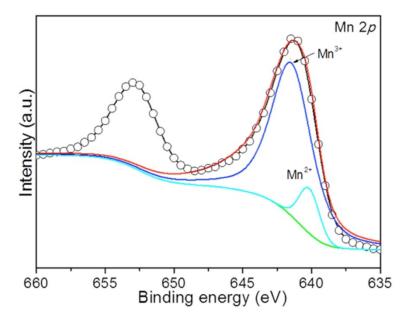




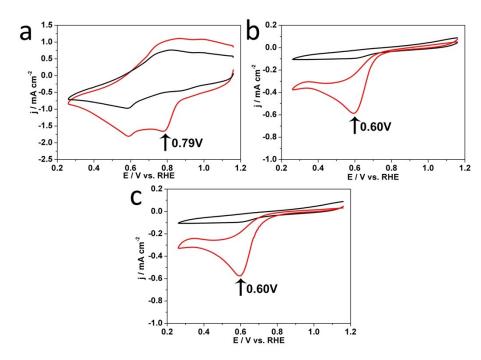

Figure S2 SEM images of the MnCNRu prepared with various amounts of TSCD.


Figure S3 Experimental XRD patterns (black line), computed XRD patterns (red line), and the residuals (blue line) of (a) MnCNMn, (b) MnCNCo, and (a) MnCNRu. The peaks indicated by (*) are generated from impurities.


Figure S4 Particle size distributions obtained from TEM images of (a) MnCNMn, (b) MnCNCo, and (a) MnCNRu PBAs.


Figure S5 TG curve of MnCNCo at a heating rate of 5 °C min⁻¹ from room temperature to 800 °C.


 $\textbf{Figure S6} \ N_2 \ gas \ adsorption-desorption \ isotherms \ of } \ Mn_3O_4, \ Mn_xCo_{3-x}O_4, \ and \ Mn-Ru \ oxide.$


Figure S7 TEM and HRTEM images of the corresponding metal oxides prepared from (a) MnCNMn, (b) MnCNCo, and (c) MnCNRu PBAs.

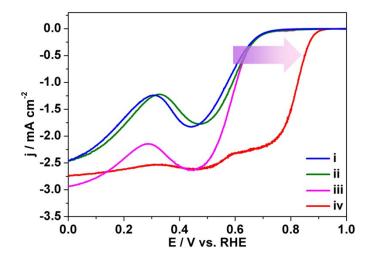

Figure S8 (a) SEM image and (b) HAADF-STEM images and the corresponding elemental mapping of the Mn-Ru oxides prepared from MnCNRu PBAs.

Figure S9 XPS spectra centered on Mn 2*p* in the Mn-Ru oxide.

Figure S10 CV curves obtained under (black plot) N₂- and (red plot) O₂-saturated 0.1 M KOH catalyzed by (a) Mn oxide, (b) Mn-Co oxide, and (c) Mn-Ru oxide prepared from MnCNMn, MnCNCo, and MnCNRu PBAs, respectively.

Figure S11 ORR polarization curves of (i) Mn oxide prepared from MnCNMn, (ii) Mn-Co oxide prepared from MnCNCo, (iii) commercially available RuO₂, and (iv) Mn-Ru oxide prepared from MnCNRu.

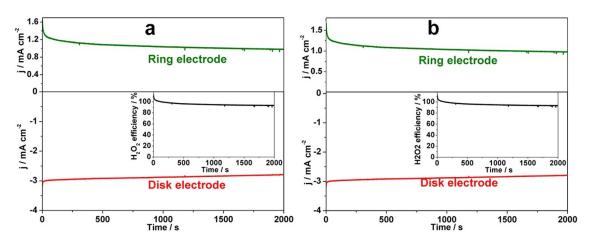
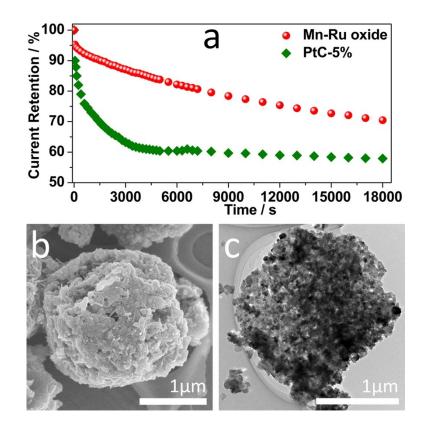



Figure S12 Chronoamperometric curves obtained at disk and ring electrodes at different constant potentials: (a) 0.65V and (b) 0.55V. The measurements were carried out in O_2 -saturated 0.1M KOH at a rotation speed of 1600 rpm. The corresponding H_2O_2 production efficiencies were shown in the insets.

Figure S13 (a) Current retention plot during chronoamperometric measurements for the Mn-Ru oxide and commercially available PtC-5% catalysts. (b) SEM and (c) TEM images of the Mn-Ru oxide after long-term stability measurement.

Table S1 Comparison between the electrocatalytic activity toward ORR of our catalysts and other previously reported materials. n is the number of electron transferred during the ORR.

Sample information	Electrolyte	Onset potential* (mV vs. RHE)	n	References
Mn-Ru oxide	0.1M KOH	910	2.0	Present work
Mn _x Co _{3-x} O ₄	0.1M KOH	762	2.0	Present work
Mn ₃ O ₄	0.1M KOH	762	2.0	Present work
Mesoporous N-doped carbon	0.1M KOH	730	2.6	Adv. Funct. Mater. 2012, 22, 4584
Reduced graphene oxide	0.1M KOH	810	2.7	Chem. Commun. 2013, 49, 6334
N-doped graphene	0.1M KOH	800	2.7	Nat. Mater. 2011, 10, 780
CoMn ₂ O ₄	0.1M KOH or KCl	780	2.9	Nat. Chem. 2011, 3, 79
Co ₂ MnO ₄	0.1M KOH or KCl	850	3.3	Nat. Chem. 2011, 3, 79
Co _x Mn _{3-x} O ₄	0.1M KOH or KCl	860	3.4	Nat. Chem. 2011, 3, 79
Porous calcium-manganese oxide (Ca ₂ Mn ₃ O ₈) microspheres	0.1M KOH	850	3.5	Chem. Sci. 2013, 4, 368
Co _x Mn _{3-x} O ₄	0.1 M KOH or KCl	880	3.7	Nat. Chem. 2011, 3, 79
Co₃O₄/graphene composite	1.0M KOH	864	3.7	J. Am. Chem. Soc. 2012, 134, 3517
Manganese oxide containing mesoporous N-doped carbon	0.1M KOH	810	3.8	Adv. Funct. Mater. 2012, 22, 4584
Flower-like manganese oxide on reduced graphene oxide	0.1M KOH	840	3.8	Chem. Commun. 2013, 49, 6334
Spinel MnCo ₂ O ₄ / graphene composite	1.0M KOH	885	3.9	J. Am. Chem. Soc. 2012, 134, 3517
Co₃O₄ nanocrystals on graphene	0.1M KOH	880	3.9	Nat. Mater. 2011, 10, 780
Iron-based catalyst (Fe-N/C)	0.1M KOH	700	3.9	Nat. Mater. 2011, 10, 780
Platinum/carbon	0.1M KOH or KCl	50	3.9	Nat. Chem. 2011, 3, 79
Spinel MnCo ₂ O ₄ nanoparticles + graphene sheet mixture	1.0M KOH	845	4.0	J. Am. Chem. Soc. 2012, 134, 3517
N-doped graphene sheets	1.0M KOH	830	4.0	J. Am. Chem. Soc. 2012, 134, 3517
Manganese oxide (β-MnO ₂)	0.1M KOH	800	4.0	Angew. Chem. Int. Ed. 2013, 52, 2474
Layer-by-layer structured NiO-GO nanocomposite	0.1M KOH	860		Chem. Commun. 2015, 51, 16409
Cobalt and nitrogen-functionalized graphene	0.1M KOH	862		J. Mater. Chem. A 2013, 1, 3593

^{*:} The potential in the present study was firstly recorded by using Ag/AgCl electrode. After the calibration of the reference electrode with respect to the reversible hydrogen electrode (RHE), the obtained potentials were converted to the scale against RHE.