Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

Direct Photocatalytic Hydrogen Evolution from Water Splitting Using Nanostructures of Hydrate Organic Small Molecule as Photocatalysts

Huihui Li, $^{\rm ab}$ Liulun Jie, $^{\rm ab}$ Jiannan Pan, $^{\rm ab}$ Longtian Kang* $^{\rm ab}$ and Jiannian Yao $^{\rm *c}$

^a Laboratory of design and assembly of functional nanostructures, Chinese Academy of Sciences, Fuzhou, 350002 (P.R. China). E-mail: longtiank@fjirsm.ac.cn.
^b Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, 350002 (P.R. China).

^c Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
*E-mail: jnyao@iccas.ac.cn.

Fig. S1 MALDI-TOF Mass spectra of rubrene nanoparticles. Calculation for $C_{42}H_{28}$ (M⁺), m/z, 531.7; found, 532.2. The peaks at 547.2 should be $C_{42}H_{27}O$, which results from the oxidation of rubrene in air.¹

Fig. S2 SEM images of rubrene nanoparticles with the average size of \sim 200 nm obtained after 1 mL of 1 mM rubrene perchlorate was rapidly injected into 3 mL of ultrapure water.

Fig. S3 The excitation spectra in aqueous dispersion system monitored at 569 nm. a) rubrene nanoparticles and the nanostructure of Rubrene/ZnP-NS with different molar ratio of b) 2:3, c) 1:3 and d) 1:6.

Fig. S4 SEM images of ZnP octahedron nanoparticles(ZnP-NPs) with the average size of ~80 nm obtained after 1 mL of 1 mM ZnP perchlorate was rapidly injected into 3 mL of ultrapure water including 6 mM CTAB and aged for one hour.

Fig. S5 Time course of photocatalytic hydrogen evolution of ZnP-NS and Rubrene/ ZnP-NS (1:3) nanostructure with and without Platinum (Pt).

Fig. S6 Fluorescence decay profiles of sole ZnP-NS and ZnP-NS in Rubrene /ZnP-NS composite with molar ratio of 2:3, 1:3 and 1:6. The system was monitored at 643 nm upon the excitation wavelength of 350 nm.

Table S1. Fluorescence decay times of the fluorescence of sole ZnP-NS and ZnP in Rubrene/ZnP-NS composite with molar of 2:3, 1:3 and 1:6. The system was monitored at 643 nm upon the excitation wavelength of 350 nm.

Molar ratio of ZnP/rubrene	$ au_1$			τ2		3	
	ns	% ₁	ns	% ₂	ns	% ₃	$ au^{a}/{ m ns}$
1:0	0.61	69.4	2.52	25.2	45.83	5.3	3.49
6:1	0.48	44.8	2.16	51.6	20.93	3.7	2.10
3:1	0.41	46.1	1.93	49.1	14.91	4.8	1.85
3:2	0.59	50.2	2.67	44.2	19.43	5.1	2.47

° Average fluorescence lifetime, τ^a =($\tau_1\%_1$ + $\tau_2\%_2$ + $\tau_3\%_3$)/100

1 C. Kloc , K. J. Tan, M. L. Toh, K. K. Zhang, Y. P. Xu, Apply. Phys. A-mater., 2009, 95, 219-224.