Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

## **Electronic Supplementary Information**

## Sodium Chloride-Assisted Green Synthesis of 3D Fe-N-C Hybrid as a

Highly Active Electrocatalyst for Oxygen Reduction Reaction

Yun Zhang, <sup>a,b</sup> Lin-Bo Huang, <sup>a,c</sup> Wen-Jie Jiang, <sup>a,c</sup> Xing Zhang, <sup>a,c</sup> Yu-Yun Chen, <sup>a</sup> Zidong Wei, <sup>b,\*</sup> Li-Jun Wan, <sup>a,c</sup> Jin-Song Hu, <sup>a,c,\*</sup>

<sup>a</sup> Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, 2 North first Street, Zhongguancun, Beijing 100190, China.

Email. hujs@iccas.ac.cn

<sup>b</sup> Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Institution School of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.

<sup>c</sup> University of Chinese Academy of Science, Beijing 100049, China

Email. zdwei@cqu.edu.cn

This file includes Fig. S1-S12 and Table S1.



Fig. S1 EDS spectrum of the precursor.





Fig. S2 Wide-scan survey XPS spectra of Fe/Fe<sub>3</sub>C@N-C-NaCl and Fe<sub>3</sub>C@N-C.



Fig. S3 TGA-DTA curves measured under Ar flow for monitoring the preparation process of  $Fe/Fe_3C@N-C-NaCl$ .

Fig. S4

Fig. S3



Fig. S4 SEM image of Fe<sub>3</sub>C@N-C.





Fig. S5 HRTEM images of a) CNT and b) GCS in Fe/Fe<sub>3</sub>C@N-C-NaCl.





Fig. S6 TGA profiles of Fe/Fe<sub>3</sub>C@N-C-NaCl and Fe<sub>3</sub>C@N-C measured under atmosphere.



Fig. S7 High-resolution Fe 2p signals in XPS spectra of Fe/Fe<sub>3</sub>C@N-C-NaCl and Fe<sub>3</sub>C@N-C.

**Table S1** The results of deconvoluted high-resolution N 1s signals of<br/>Fe/Fe<sub>3</sub>C@N-C-NaCl and Fe<sub>3</sub>C@N-C.

| Sample                        | N<br>(at.%) | C-N<br>(at.%) | Fe-N <sub>x</sub><br>(at.%) | quaternary-N<br>(at.%) | oxidized-N<br>(at.%) |
|-------------------------------|-------------|---------------|-----------------------------|------------------------|----------------------|
| Fe/Fe <sub>3</sub> C@N-C-NaCl | 3.13        | 0.55          | 1.34                        | 0.65                   | 0.58                 |
| Fe <sub>3</sub> C@N-C         | 2.19        | 0.47          | 0.53                        | 0.73                   | 0.45                 |



Fig. S8 LSV curves for Fe/Fe<sub>3</sub>C@N-C-NaCl before and after 5000 potential cycles between 0.6 and 1.0 V (vs RHE) at a scanning rate of 50 mV s<sup>-1</sup>.





**Fig. S9** a) SEM and b-c) TEM images of the sample synthesized without melamine; d) SEM and e-f) TEM images of the sample synthesized without glucose; g) SEM and h-i) TEM images of the sample synthesized without iron.

**Fig. S10** 



Fig. S10 a)  $N_2$  adsorption/desorption isotherm, b) the corresponding pore size distribution curve, and c) wide-scan survey XPS spectrum of the sample prepared without iron.





Fig. S11 a-c) XRD patterns of the samples prepared without melamine, glucose, and iron, respectively.

**Fig. S12** 



**Fig. S12** a) LSV curves of catalysts prepared at different pyrolysis temperature, and b) LSV curves of catalysts prepared with different iron content. All curves were recorded at a scan rate of 10 mV s<sup>-1</sup> and a rotation speed of 1600 rpm in O<sub>2</sub>-saturated 0.1 M KOH.