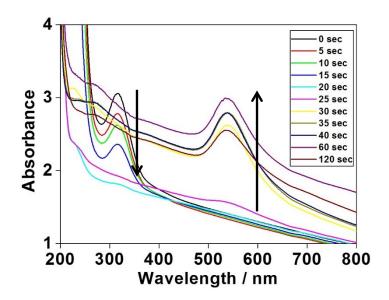
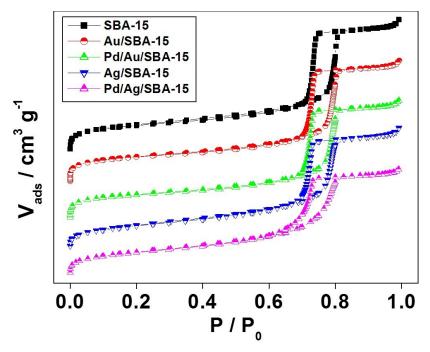
Supporting information

Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation

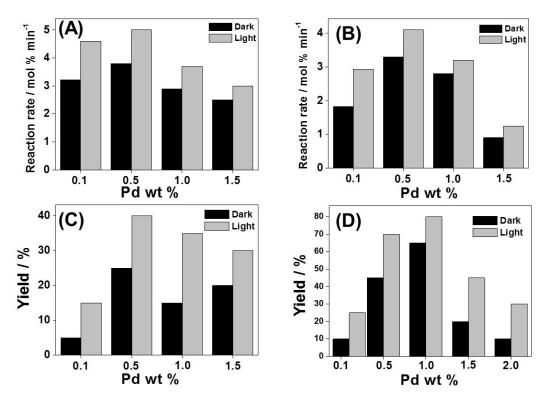

Priyanka Verma,^[a] Yasutaka Kuwahara,^[a,b] Kohsuke Mori, ^[a,b,c] and Hiromi Yamashita^{*[a,b]}

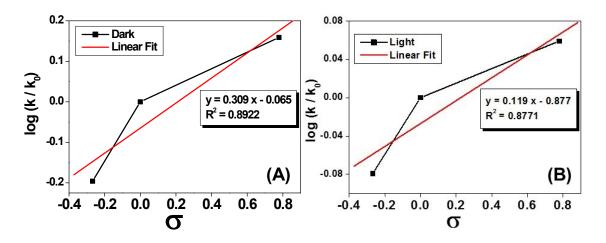
AUTHOR ADDRESS:


 [a] Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
 E-mail: yamashita@mat.eng.osaka-u.ac.jp; Fax: +81-6-6879-7457; Tel: +81-6-6879-7457

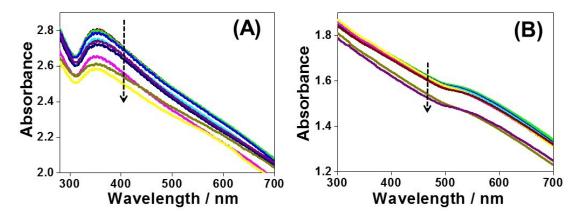
^[b] Elements Strategy Initiative for Catalysts & Batteries Kyoto University, ESICB, Kyoto University, Katsura, Kyoto 615-8520, Japan

^[c] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 (Japan)


Figure S1. Time evolution of MW irradiation for the reduction of HAuCl₄ to Au NPs on a mesoporous silica support


Figure S2. N₂ adsorption-desorption isotherms performed at 77 K for SBA-15, M/SBA-15 and Pd/M/SBA-15 catalysts (M=Au, Ag).

Catalyst	Mesopore volume (cm ³ g ⁻¹)	BET surface area (m ² g ⁻¹)
SBA-15	1.32	756
Au/SBA-15	1.21	668
Pd/Au/SBA-15	1.18	642
Ag/SBA-15	1.24	717
Pd/Ag/SBA-15	1.10	692


 Table S1. Textural properties of the prepared catalysts

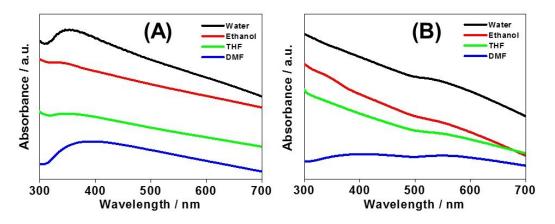

Figure S3. Optimization reactions for AB dehydrogenation (**A**) Pd on Ag, (**B**) Pd on Au and Suzuki coupling reaction (**C**) Pd on Ag, (**D**) Pd on Au.

Figure S4. Hammett plot corresponding to Suzuki Miyaura coupling reaction for substituted iodobenzene under (A) Dark and (B) visible light irradiation

Figure S5. UV-vis spectra of (A) Pd/Ag/SBA-15 and (B) Pd/Au/SBA-15 as a result of electron injection experiments.

Figure S6. Effect of refractive index of solvent on plasmonic wavelength for (A) Pd/Ag/SBA-15 and (B) Pd/Au/SBA-15

Section S1. Tunability Experiments

- a) **Tunability by electron injection:** Tunability by electron injection was measured by in-situ UV-vis spectroscopy measurements. The reaction was carried out in quartz cell by adding 5 mg of plasmonic catalyst (M/SBA-15) and 2.5 mL of water. The process was monitored by UV after the successive addition (10 μ L) of 0.132 M sodium borohydride (used as electron injector in this case). The spectra obtained from Ag and Au after electron injection are shown in Fig. 8 (A) and (B).
- b) **Tunability by varying refractive index:** In a quartz cell, 5 mg of the catalyst powder was dispersed in solvents of different refractive index and their interaction with incoming light was again monitored by UV-vis spectroscopy. Different plasmonic peak showed in different solvents and found to be a linear relationship of

the refractive index and plasmonic shift. Corresponding absorbance shift and linear graph is shown in Fig. 9 (A) and (B) for Ag and Au.

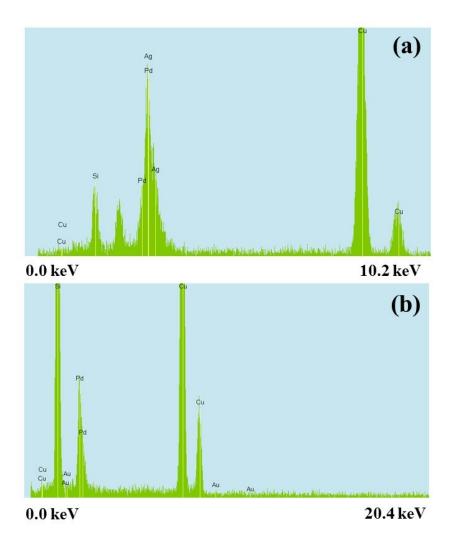


Figure S7. TEM-EDX analysis for (a) Pd/Ag/SBA-15 and (b) Pd/Au/SBA-15