Efficient C₃N₄/graphene oxide aerogel macroscopic visiblelight photocatalyst

Wenchao Wan^{1,2}, San Yu², Fan Dong³, Qian Zhang², and Ying Zhou^{1,2*}

¹State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu 610500, China

²The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Xindu Road 8, Chengdu 610500, China

³ College of Environment and Resources, Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, Chongqing Technology and Business University, Chongqing 400067, China

*To whom correspondence should be addressed

Email: <u>yzhou@swpu.edu.cn</u>, <u>yzhou44@126.com</u> (Y. Zhou)

Supplementary Methods

Measurement of the specific surface area.

The specific surface area was determined through the MB adsorption method by UV-vis spectroscopy (Shimadzu UV-2600).¹ The SSA of the sample was calculated using the following equation:

$$SSA = \frac{N_A A_{MB} (C_0 - C_e) V}{M_{MB} m_s}$$

where N_A is Avogadro number (6.02×10²³ mol⁻¹), A_{MB} is the covered area of per M_B molecule (typically assumed to be 1.35 nm²), C_0 and C_e are the initial and equilibrium concentrations of MB, respectively, V is the volume of MB solution, M_{MB} is the relative molecular mass of M_B , and m_s is the mass of the sample.

Supplementary Figures

Figure S1. The mechanical property of the monolithic C_3N_4/GOA and GOA.

Figure S2. The O1s XPS peak of C_3N_4/GOA .

Figure S3. The schematic of NO removal device: (a) the reactor, (b) the NO detector, (c) The C_3N_4/GOA sample in the petri dish for experiment, (d) the sample being taken up and (e) the powdery C_3N_4 in the petri dish.

Figure S4. Nitrogen adsorption/desorption isotherm of the powdery C_3N_4 and C_3N_4 /GOA with 90wt% of C_3N_4 (inset: pore volume of the corresponding samples).

Figure S5. SEM image of C_3N_4 /GOA after photocatalytic oxidation of NO

Figure S6. The adsorption and photodegradation for RhB over C_3N_4/GOA under visible light irradiation

Figure S7. The adsorption for methylene blue (MB) over GO, C_3N_4 /GOA and powdery C_3N_4 .

Figure S8. Photographs of BN/GOA and MoS_2/GOA .

Supplementary Tables

	C ₃ N ₄ -dark	C ₃ N ₄ -light	C ₃ N ₄ /GOA-dark	C ₃ N ₄ /GOA-light
Ro $(\Omega \text{ cm}^2)$	4.031	4.248	3	3.084
Co (F cm ⁻²)	8.2767E-08	8.0658E-08	2.1169E-07	1.7985E-07
Wo -P	0.23616	0.29589	0.39644	0.32383
Rs $(\Omega \text{ cm}^2)$	16.13	16.07	17	16.72
$R_1 \ (\Omega \ cm^2)$	2015	1524	27.3	21.72
CPE1-P	0.92892	0.94455	0.48976	0.50376
CPE1-T (S	0.00030993	0.00075723	0.0057034	0.0060799
cm ⁻² S ^p)				
$R_2 (\Omega \text{ cm}^2)$	4834	806.4	924.8	514.8
$C_2 (F \text{ cm}^{-2})$	0.00018709	0.00096299	0.012702	0.011492

Table S1. The modeling of *R*-*C* values of C₃N₄ and C₃N₄/GOA

Ro: the resistance of Pt electrode;

R₁: the resistance of work electrode, CPE1-P and CPE1-T: the deviation of constant phase angle;

Rs: the resistance of the solution;

R₂: the resistance of the reaction;

Supplementary References

 Yang, C., Shen, J., Wang, C., Fei, H., Bao, H., Wang, G. J. Mater. Chem. A. 2, 1458 (2014).