Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting Information for

N, O-codoped hierarchical porous carbons derived from algae

for high-capacity supercapacitors and battery anodes

Wenhua Yu, Huanlei Wang, * Shuang Liu, Nan Mao, Xiao Liu, Jing Shi, Wei Liu,

Shougang Chen, and Xin Wang

Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

* Email:huanleiwang@gmail.com; huanleiwang@ouc.edu.cn.

Fig. S1 Fitted Raman spectra of (a) EDC-1, (b) EDC-2, and (c) EDC-3 specimens by using Voigt function.

Fig. S2 High-resolution XPS (a) C1s, (b) O 1s, and (c) N 1s spectra of EDC-1. High-resolution XPS (d) C1s, (e) O 1s, and (f) N 1s spectra of EDC-2. High-resolution XPS (g) C1s, (h) O 1s, and (i) N 1s spectra of EDC-3.

Table S1 Relative surface concentrations (%) of nitrogen and oxygen species obtained by fittingthe N 1s and O 1s core level XPS spectra.

Sample	N-5	N-Q	O-I	O-II	O-III
EDC-1	71.04	28.96	25.93	57.61	16.46
EDC-2	18.75	81.25	34.53	53.29	13.07
EDC-3	7.94	92.06	42.84	44.97	12.19

Fig. S3 CV curves of (a) EDC-1, (b) EDC-2, and (c) AC for different scan rates, tested at 20 °C.

Fig. S4 Specific capacitance as a function of scan rates.

Fig. S5 CV curves of (a) EDC-2 and (b) EDC-3 for different scan rates, tested at 60 °C.

Fig. S6 Galvanostatic charge-discharge profiles of EDCs and AC, tested at a current density of (a) 20 A g^{-1} , and (b) 50 A g^{-1} .

Fig. S7 Nyquist plots of the EDC electrodes in ionic liquid electrolyte, tested at (a) 20 °C and (b) 60 °C.

Sample	Electrolyte	Testing temperature	Capacity at low current	Capacity at high current	Capacity retention	Cyclability	Voltage	Maximum Energy	Energy at high power
3D ordered mesoporous carbon ¹	EMI-TFSI	20 °C	146-178 F g^{-1} (0.5 A g^{-1})	80–123 F g ⁻¹ (25 A g ⁻¹)	> 50 % (0.5-25 A g ⁻ ¹)	90% after 1000 cycles (5 A g ⁻¹)	0-3.5	-	-
3D Carbon ²	EMIMBF ₄	20 °C	196 F g ⁻¹ (0.5 A g ⁻¹)	133 F g ⁻¹ (10 A g ⁻¹)	67.8 % (0.5-10 A g ⁻	-	0-3.5	91.4 Wh kg ⁻¹	70 Wh kg ⁻¹ (1223 W kg ⁻¹)
carbons derived from biowaste ³	EMIM TFSI	60 ℃	161.5 F g ⁻¹ (0.1 A g ⁻¹) 163.3 F g ⁻¹ (0.1 A g ⁻¹)	95.3 F g ⁻¹ (10 A g ⁻¹) 121.7 F g ⁻¹ (10 A g ⁻¹)	59 % (0.1-10 A g ⁻ ¹) 74.5 % (0.1-10 A g ⁻	91% after 5000 cycles (10 A g ⁻¹)	0-3	51 Wh kg ⁻¹ (375 W kg ⁻¹)	26–31Wh kg ⁻¹ (6760–7000 W kg ⁻¹)
Nitrogen-			242 F g ⁻¹	155 F g ⁻¹	¹) 64 %	92% after		90 Wh kg-1	52.5 W h kg ⁻¹
doped carbon nanosheets ⁴	EMIMBF ₄	20 °C	(0.1 Ag ⁻¹)	(10 Ag ⁻¹)	(0.1-10 A g ⁻	10000 cycles (2A g ⁻¹)	0-3.5	(875 W kg ⁻¹)	(8750 W kg ⁻¹)
Interconnect ed carbon nanosheets ⁵	BMPY TFSI	0-100 °C	157 F g ⁻¹ (1 A g ⁻¹ , 20 °C)	113 F g ⁻¹ (100 A g ⁻¹ , 20 °C)	72% (0.1-100 A g ⁻¹)	96% after 10000 cycles at 10Ag ⁻¹ (60°C)	0-3	-	19, 34 and 40 Wh kg ⁻¹ at 20 kW kg ⁻¹ (20, 60, 100 °C)
Microporous carbon nanoplates ⁶	BMIMBF ₄ /AN	20 °C	168 F g ⁻¹ (0.8 A g ⁻¹)	-	-	96.5 % after 10000 cycles (2.5 A g ⁻¹)	0-3.5	-	-
Nanocarbon s ⁷	EMIMBF ₄	20 °C	145 F g ⁻¹ (0.5 A g ⁻¹)	120 F g ⁻¹ (2 A g ⁻¹)	-	-	0-4	80 Wh kg ⁻¹	-
N-doping mesoporous carbon ⁸	EMI-TFSI	20 °C	237 F g ⁻¹ (0.1 A g ⁻¹)	151 F g ⁻¹ (10 A g ⁻¹)	63.7 % (0.1-10 A g ⁻	~95% after 1000 cycles (1 A g ⁻¹)	0-3.5	83 Wh kg ⁻¹	-
Shape- controlled porous nanocarbons	EMIMBF ₄	20 °C	140 F g ⁻¹ (1 A g ⁻¹)	105.9 F g ⁻¹ (50 A g ⁻¹)	75.6 % (1-50 A g ⁻¹)	-	0-3.5	56.6 Wh kg ⁻	50.5 Wh kg ⁻¹ (17.4 kW kg ⁻¹)

Table S2 Comparison of capacitance and energy density of carbon-based electrodes

for supercapacitors.

9									
Activated	BMIM TFSI	20 °C	173 F g ⁻¹	174 F g ⁻¹	-	94% after		74 Wh kg ⁻¹	-
graphene-	/AN		(2.1 A g ⁻¹)	(8.4 A g ⁻¹)		1000 cycles	0-3.5		
based						(2Ag-1)			
carbons ¹⁰	BMIMBF ₄	•	167 F g ⁻¹	167 F g ⁻¹	-	(
	/AN		(2.1 A g ⁻¹)	(8.4 A g ⁻¹)		EMIMTFSI)			
Domouro 2D	EMIMDE	20.00	221 E erl	210 E ~1	00.0.0/	049/ after	0.2.5	08 Wh here]	
graphono	EMINIBF4	20 %	231 F g ·	(10 A g-l)	90.9 %	5000 evolor	0-3.5	98 wn kg ⁻	-
based bulk			(IAg)	(10 A g)	(1-10 A g)	(1 A grl)			
Material ¹¹						(IAg)			
rGO +	BMIMBE	20 °C	222 F g ⁻¹			99% after	0-3.5	106.6 Wh	58 9 Wh kg-1
SWCNT ¹²	Difficient 4	20 0	$(1 \text{ A } \sigma^{-1})$			1000 cycles	0 5.5	kg -l	$(10.9 \text{ kW kg}^{-1})$
Swerri			(1115)			(1A g ⁻¹)		(1.19 kW	(10.) K (Kg)
						(8)		kg ⁻¹)	
Carbon	EMIMBF ₄	20 °C	183.3 F g ⁻¹	154.3 F g ⁻¹	84.1%	94% after	0-3.5	8.5 Wh kg ⁻¹	65.6 Wh kg ⁻¹
nanotube			(0.5 A g ⁻¹)	(10 A g ⁻¹)	(0.5-10 A g-	2000 cycles		(438 W kg-	(9.1 kW kg ⁻¹)
spaced					¹)	(2 A g ⁻¹)		¹)	
graphene									
aerogels13									
Carbon	EMIMBF ₄	20 °C	199 F g ⁻¹	99 F g ⁻¹	49.7 %	98.2% after	0-4	110.6 Wh	-
naotube-			(0.5 A g ⁻¹)	(20 A g ⁻¹)	(0.5-20 A g-	10000		kg-1	
bridged					¹)	cycles (10 A			
graphene14						g ⁻¹)			
Porous	EMIMBF ₄	25°C	146.5 F g ⁻¹	50.2 F g ⁻¹	34.3 %	85.7% after	-1.5-1.5	-	-
carbons15			(1 A g ⁻¹)	(20Ag ⁻¹)	(1-20 A g ⁻¹)	5000 cycles			
						(10 A g ⁻¹)			
		50°C	220.3 F g ⁻¹	96.5 F g ⁻¹	43.8 %	92.5% after	-		
			(1 A g ⁻¹)	(20 A g ⁻¹)	(1-20 A g ⁻¹)	5000 cycles			
						(10 A g ⁻¹)			
		80°C	295.6 F g ⁻¹	110.2 F g ⁻¹	37.3 %	92.9% after	-		
			(1 A g ⁻¹)	(20 A g ⁻¹)	(1-20 A g ⁻¹)	5000 cycles			
						(10 A g ⁻¹)			
Hierarchical	EMIM TFSI	60 °C	146 F g ⁻¹	108 F g ⁻¹	74 %	95% after	0-3.5	58.6 W h kg-	43.3 Wh kg ⁻¹
nanoporous			(0.2 A g ⁻¹)	(50 A g ⁻¹)	(0.2-50 A g-	5000 cycles		1	(42 000 W kg-
Carbon16					¹)	(1 A g ⁻¹)		(166 W kg ⁻¹)	¹)
Carbons	EMIM TFSI	20 °C	170 F g ⁻¹	140 F g ⁻¹	82 %	90% after	0-3	50-60 Wh	20 Wh kg ⁻¹
from			(1 A g ⁻¹)	(60 A g^{-1})	(1-60 A g ⁻¹)	10000		kg-1	(42 kW kg ⁻¹)
renewable		60 °C	180Fg ⁻¹	130 F g ⁻¹	72 %	cycles (10 A			20 Wh kg-1
sources17			(1 A g ⁻¹)	(120 A g ⁻¹)	(1-120 A g-	g-1)			(55 kW kg ⁻¹)
					¹)				
EDCs	EMIMBF ₄	20 °C	201 F g ⁻¹	122 F g ⁻¹	61 %	91% after	0-3	62 Wh kg ⁻¹	24 Wh kg-1
(this work)			(1 A g ⁻¹)	(100 A g ⁻¹)	(1-100 A g-	10000			(60 kW kg ⁻¹)

			¹)	cycles (10 A g ⁻¹)	
60 °C	196 F g ⁻¹	140 F g ⁻¹	72 %		35 Wh kg ⁻¹
	(1 A g ⁻¹)	(100 A g ⁻¹)	(1-100 A g-		(60 kW kg ⁻¹)
			¹)		

Fig. S8 Capacitance retention *versus* the cycle number for EDC-3, measured at 10 A g^{-1} and 20 °C.

Fig. S9 (a) CV curves of EDC-1 at 0.1 mV s⁻¹. (b) CV curves of EDC-2 at 0.1 mV s⁻¹.

Fig. S10 Charge-discharge curves of (a) EDC-1 and (b) EDC-2 at 0.1 A g⁻¹.

Fig. S11 Nyquist plots of the EDC-3 electrode (a) before cycling and (b) after 500 cycles. Inset is the used equivalent circuit.

Sample	Electrolyte	Voltage	Initial	Rate capacity	Cyclability
			coulombic		
			efficiency		
Carbon	1M LiPF ₆	0-3V	50%	1394 mAh g ⁻¹ at 1A g ⁻¹ ;	~100 % capacity
nanobubbles18				622 mAh g ⁻¹ at 5 A g ⁻¹ ;	retention at 100 cycle
				498 mAh g ⁻¹ at 10 A g ⁻¹ ;	and 10 A g ⁻¹
Hierarchically	LiPF ₆	0-3V	64%	1470 mAh g ⁻¹ at 0.037 A g ⁻¹ ;	976 mAh g ⁻¹ at 300
porous nitrogen-				975 mAh g ⁻¹ at 0.37 A g ⁻¹ ;	cycle and 0.37 A g^{-1} ;
rich carbon ¹⁹				344 mAh g ⁻¹ at 18.5 A g ⁻¹ ;	659 mAh g ⁻¹ at 300
				198 mAh g ⁻¹ at 37 A g ⁻¹ ;	cycle and 3.7 A g ⁻¹
Nitrogen-doped	1 M LiPF ₆	0.01-3V	58.4%.	2163 mAh g ⁻¹ at 100 mA g ⁻¹ ;	785 mAh g ⁻¹ after 1000
porous carbon ²⁰				1790 mAh g ⁻¹ at 200 mA g ⁻¹ ;	cycles and 5 A g ⁻¹ ;
				1588 mAh g ⁻¹ at 400 mA g ⁻¹ ;	2132 mAh g ⁻¹ after 50
				1463 mAh g ⁻¹ at 600 mA g ⁻¹ ;	cycles and 0.1 Ag-1
				1361 mAh g ⁻¹ at 800 mA g ⁻¹ ;	(99.2% capacity
				1182 mAh g ⁻¹ at1600 mA g ⁻¹ ;	retention)
Porous	1M LiPF ₆	0.01-3V	52%	860 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	470 mAh g ⁻¹ after 2000
graphene ²¹				560 mAh g^{-1} at 5 A g^{-1} ;	cycles and 10 A g ⁻¹
				220 mAh g ⁻¹ at 80 A g ⁻¹ ;	
Hybrid carbon	1M LiPF ₆	0.01-3V	\sim 54%	900 mAh g ⁻¹ at 100 mA g ⁻¹ ;	98.92% after 250 cycles
naotube and				526 mAh g ⁻¹ at 900 mA g ⁻¹ ;	and 600 mA g $^{\mbox{-}1}$
graphene				370 mAh g ⁻¹ at 1500 mAg ⁻¹ ;	
nanostructures22					
Amorphous	1M LiPF ₆	0-3V	55.9%	960 mAh g ⁻¹ at 0.05 A g ⁻¹ ;	965 mA h g ⁻¹ after 100
carbon nanotubes				748 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	cycles and 0.05A g ⁻¹ ;
with hollow				573 mAh g ⁻¹ at 0.25 A g ⁻¹ ;	330 mA h g ⁻¹ after 650
graphitic				456 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	cycles and 3.7 A g ⁻¹ ;
carbon				400 mAh g ⁻¹ at 1.85 A g ⁻¹ ;	
nanospheres23				330 mA h g ⁻¹ at 3.7 A g ⁻¹ ;	
Hollow carbon	1M LiPF ₆	0-3V	62.2%	940 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	$1150 \text{ mAh g}^{-1} \text{ after } 70$
nanotube/carbon				700 mAh g ⁻¹ at 1 A g ⁻¹ ;	cycles and $0.1\ A\ g^{-1}$;
nanofiber hybrid				500 mAh g ⁻¹ at 3 A g ⁻¹ ;	320 mAh g^{-1} after 3500
anodes24				380 mAh g ⁻¹ at 5 A g ⁻¹ ;	cycles and 8 A g^{-1} (>
				320 mAh g ⁻¹ at 8 A g ⁻¹ ;	80% capacity retention)

Table S3 Comparison of capacity of carbon-based electrodes for lithium ion battery.

Folded structured	1 M LiPF ₆	0.01–3.5 V	79.2%	557 mAh g ⁻¹ at 0.2 A g ⁻¹ ;	-
graphene paper ²⁵				268 mAh g ⁻¹ at 0.5A g ⁻¹ ;	
				169 mAh g ⁻¹ at 1 A g ⁻¹ ;	
				141mAh g ⁻¹ at 1.5A g ⁻¹ ;	
Nitrogen-doped	1 M LiPF ₆	0.01–3 V	48.4%	924 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	943 mAh g ⁻¹ after 600
porous carbon				773 mAh g ⁻¹ at 1 A g ⁻¹ ;	cycles and 2 A g ⁻¹
nanofiber webs26				637 mAh g ⁻¹ at 2 A g ⁻¹ ;	
				505 mAh g^{-1} at 5 A g^{-1} ;	
				321 mAh g ⁻¹ at 10 A g ⁻¹ ;	
Two-dimensional	1 M LiPF ₆	0.01-3V	< 30%	770 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	-
mesoporous				540 mAh g ⁻¹ at 0.2 A g ⁻¹ ;	
carbon				430 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	
nanosheets27				370 mAh g ⁻¹ at 1 A g ⁻¹ ;	
				255 mAh g^{-1} at 5 A g^{-1} ;	
Branched	1 M LiPF ₆	0.01-3V	66.2%	1340 mAh g ⁻¹ at 0.4 A g ⁻¹ ;	1373 mAh g ⁻¹ after 200
graphene				750 mAh g ⁻¹ at 8 A g ⁻¹ ;	cycles and 0.5A g ⁻¹ ;
nanocapsules ²⁸				447 mAh g^{-1} at 20 A g^{-1} ;	604 mAh g ⁻¹ after 5000
					cycles and 15 A g ⁻¹ ;
Mesoporous	1 M LiPF ₆	0.01-3V	55-65%	865 mAh g ⁻¹ at 0.3 A g ⁻¹ ;	70% after 100 cycles
nitrogen-rich				460 mAh g ⁻¹ at 1 A g ⁻¹ ;	and 0.5 A g ⁻¹
carbons derived				205 mAh g^{-1} at 4 A g^{-1} ;	
from protein29					
Carbon	1 M LiPF ₆	0.01-3V	62.1%	1216 mAh g ⁻¹ at 1 A g ⁻¹ ;	1263 mAh g ⁻¹ after 100
nanorings ³⁰				939 mAh g ⁻¹ at 4.8 A g ⁻¹ ;	cycles and 0.4 A $g^{\mbox{-}1}$
				758 mAh g ⁻¹ at 15 A g ⁻¹ ;	
				508 mAh g ⁻¹ at 45 A g ⁻¹ ;	
Nitrogen-doped	1 M LiPF ₆	0.01-3V	90.2%	920 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	1046 mAh g ⁻¹ after 50
carbon capsules ³¹				285 mAh g ⁻¹ at 20 A g ⁻¹ ;	cycles and 50 mA g ⁻¹ ;
					750 mAh g ⁻¹ after 600
					cycles and 2 A g ⁻¹ ;
Sulfur-doped	1 M LiPF ₆	0.01-3 V	55.6%	1400 mAh g ⁻¹ at 0.05 A g ⁻¹ ;	780 mAh g ⁻¹ after 500
porous carbons				280 mAh g ⁻¹ at 20 A g ⁻¹ ;	cycles and 1A g ⁻¹
hybridized with					
graphene ³²					
Nitrogen and	1 M LiPF ₆	0.005-3V	44.7%	896 mAh g ⁻¹ at 0.4 A g ⁻¹ ;	1090 mAh g ⁻¹ after 500
sulfur codoped				882 mAh g ⁻¹ at 0.8A g ⁻¹ ;	cycles and 0.2A g ⁻¹
graphene ³³				844 mAh g^{-1} at 2 A g^{-1} ;	
				297 mAh g ⁻¹ at 5 A g ⁻¹ ;	
Porous carbon	1 M LiPF ₆	0.001-3V	~54-55%	1950 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	178 0mAh g ⁻¹ after 40
nanofiber ³⁴				1000 mAh g^{-1} at 0.5 A g^{-1} ;	cycles and 50 mA g ⁻¹ ;
				723 mAh g ⁻¹ at 1 A g ⁻¹ ;	1500mAh g ⁻¹ after 600
				$357 \text{ mAh } \text{g}^{-1} \text{ at } 5 \text{ A } \text{g}^{-1};$	cycles and 500 mA g ⁻¹ ;

				272 mAh g ⁻¹ at 10 A g ⁻¹ ;	
				200 mAh g ⁻¹ at 20 A g ⁻¹ ;	
Porous carbon	1 M LiPF ₆	0.01-3V	56%	1068 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	857.6 mAh g ⁻¹
nanofiber webs35				505 mAh g ⁻¹ at 1 A g ⁻¹ ;	after 100 cycles and
				436 mAh g ⁻¹ at 2 A g ⁻¹ ;	0.1A g ⁻¹
				261 mAh g ⁻¹ at 8 A g ⁻¹ ;	
				250 mAh g ⁻¹ at 10 A g ⁻¹ ;	
3D carbon	1 M LiPF ₆	0.01-3V	-	312 mAh g ⁻¹ at 0.2 C ;	211-264 mAh g ⁻¹ after
nanotubes ³⁶				251 mAh g ⁻¹ at 0.5 C;	50 cycles and 0.5 C
				211 mAh g ⁻¹ at 1 C;	
				155 mAh g ⁻¹ at 3 C;	
				(1 C= 372 mAh g ⁻¹)	
3D hierarchical	1 M LiPF ₆	0.1-3V	42%	1050 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	700-1100 mAh g ⁻¹ after
porous				750 mA h g ⁻¹ at 0.5 A g ⁻¹ ;	100 cycles and 0.1A g ⁻¹
graphene ³⁷				500 mAh g ⁻¹ at 2 A g ⁻¹ ;	
				400 mAh g ⁻¹ at 10 A g ⁻¹ ;	
				300 mAh g ⁻¹ at 20 A g ⁻¹ ;	
Sulfur-doped	1 M LiPF ₆	0.01-3V	-	1042 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	579 mAh g ⁻¹ after 970
mesoporous				675 mA h g ⁻¹ at 0.2 A g ⁻¹ ;	cycles and 0.5 A $g^{\text{-}1}$
carbon ³⁸				583 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	
				441 mAh g ⁻¹ at 1 A g ⁻¹ ;	
				322 mAh g ⁻¹ at 2 A g ⁻¹ ;	
Nitrogen-doped	1 M LiPF ₆	0.005-3V	49%	750 mAh g ⁻¹ at 0.5 A g ⁻¹ ;	1094 mAh g ⁻¹ after
3D macroporous				480 mAh g ⁻¹ at 2 A g ⁻¹ ;	100 cycles and 0.2 A g-
graphene					l;
frameworks ³⁹					691 mAh g ⁻¹ after 500
					cycles and 1A g ⁻¹ ;
EDCs	1 M LiPF ₆	0.01-3V	61-64%	900-1000 mAh g ⁻¹ at 0.1 A g ⁻¹ ;	350 mAh g ⁻¹ after 500
(this work)				650 mA h g ⁻¹ at 0.5 A g ⁻¹ ;	cycles and 2 A g ⁻¹
				220 mAh g ⁻¹ at 5 A g ⁻¹ ;	
				170 mAh g ⁻¹ at 10 A g ⁻¹ ;	

References

- A. Vu, X. Y. Li, J. Phillips, A. J. Han, W. H. Smyrl, P. Buhlmann and A. Stein, *Chem. Mater.*, 2013, 25, 4137-4148.
- 2. J. H. Hou, C. B. Cao, X. L. Ma, F. Idrees, B. Xu, X. Hao and W. Lin, Sci. Rep., 2014, 4, 7260.
- 3. H. L. Wang, Z. Li, J. K. Tak, C. M. B. Holt, X. H. Tan, Z. W. Xu, B. S. Amirkhiz, D. Hayfield, A. Anyia, T. Stephenson and D. Mitlin, *Carbon*, 2013, **57**, 317-328.
- 4. J. H. Hou, C. B. Cao, F. Idrees and X. L. Ma, ACS Nano, 2015, 9, 2556-2564.
- H. Wang, Z. W. Xu, A. Kohandehghan, Z. Li, K. Cui, X. H. Tan, T. J. Stephenson, C. K. King'ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia and D. Mitlin, ACS Nano, 2013, 7, 5131-5141.
- Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S. J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park and H. J. Jin, *Adv. Mater.*, 2013, 25, 1993-1998.
- 7. H. T. Zhang, X. Zhang, X. Z. Sun and Y. W. Ma, Sci. Rep., 2013, 3, 3534.
- B. E. Wilson, S. Y. He, K. Buffington, S. Rudisill, W. H. Smyrl and A. Stein, J. Power Sources, 2015, 298, 193-202.
- W. Chen, R. B. Rakhi, M. N. Hedhili and H. N. Alshareef, J. Mater. Chem. A, 2014, 2, 5236-5243.
- 10. T. Kim, G. Jung, S. Yoo, K. S. Suh and R. S. Ruoff, ACS Nano, 2013, 7, 6899-6905.
- L. Zhang, F. Zhang, X. Yang, G. K. Long, Y. P. Wu, T. F. Zhang, K. Leng, Y. Huang, Y. F. Ma, A. Yu and Y. S. Chen, *Sci. Rep.*, 2013, 3, 1408.
- 12. N. Jha, P. Ramesh, E. Bekyarova, M. E. Itkis and R. C. Haddon, *Adv. Energy Mater.*, 2012, **2**, 438-444.
- Q. G. Shao, J. Tang, Y. X. Lin, J. Li, F. X. Qin, J. S. Yuan and L. C. Qin, *J. Power Sources*, 2015, 278, 751-759.
- D. T. Pham, T. H. Lee, D. H. Luong, F. Yao, A. Ghosh, V. T. Le, T. H. Kim, B. Li, J. Chang and Y. H. Lee, ACS Nano, 2015, 9, 2018-2027.
- 15. X. Y. Chen, D. H. Xie, Z. J. Zhang and C. Chen, J. Power Sources, 2014, 246, 531-539.
- W. Q. Tian, Q. M. Gao, Y. L. Tan, K. Yang, L. H. Zhu, C. X. Yang and H. Zhang, J. Mater. Chem. A, 2015, 3, 5656-5664.
- 17. A. B. Fuertes and M. Sevilla, *Carbon*, 2015, 94, 41-52.
- 18. H. W. Song, N. Li, H. Cui and C. X. Wang, *Nano Energy*, 2014, 4, 81-87.
- L. Chen, Y. Z. Zhang, C. H. Lin, W. Yang, Y. Meng, Y. Guo, M. L. Li and D. Xiao, J. Mater. Chem. A, 2014, 2, 9684-9690.
- 20. F. C. Zheng, Y. Yang and Q. W. Chen, Nat. Commun., 2014, 5, 5261.
- 21. Z. L. Wang, D. Xu, H. G. Wang, Z. Wu and X. B. Zhang, ACS Nano, 2013, 7, 2422-2430.
- 22. W. Wang, I. Ruiz, S. R. Guo, Z. Favors, H. H. Bay, M. Ozkan and C. S. Ozkan, *Nano Energy*, 2014, **3**, 113-118.
- 23. Y. M. Chen, Z. G. Lu, L. M. Zhou, Y. W. Mai and H. T. Huang, *Energy Environ. Sci.*, 2012, 5, 7898-7902.

- Y. M. Chen, X. Y. Li, K. Park, J. Song, J. H. Hong, L. M. Zhou, Y. W. Mai, H. T. Huang and J. B. Goodenough, J. Am. Chem. Soc., 2013, 135, 16280-16283.
- 25. F. Liu, S. Y. Song, D. F. Xue and H. J. Zhang, Adv. Mater., 2012, 24, 1089-1094.
- L. Qie, W. M. Chen, Z. H. Wang, Q. G. Shao, X. Li, L. X. Yuan, X. L. Hu, W. X. Zhang and Y. H. Huang, *Adv. Mater.*, 2012, 24, 2047-2050.
- Y. Fang, Y. Y. Lv, R. C. Che, H. Y. Wu, X. H. Zhang, D. Gu, G. F. Zheng and D. Y. Zhao, J. Am. Chem. Soc., 2013, 135, 1524-1530.
- Y. P. Liu, W. Li, D. K. Shen, C. Wang, X. M. Li, M. Pal, R. Y. Zhang, L. Chen, C. Yao, Y. Wei, Y. H. Li, Y. J. Zhao, H. W. Zhu, W. X. Wang, A. M. El-Toni, F. Zhang and D. Y. Zhao, *Chem. Mater.*, 2015, 27, 5577-5586.
- Z. Li, Z. W. Xu, X. H. Tan, H. L. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen and D. Mitlin, *Energy Environ. Sci.*, 2013, 6, 871-878.
- J. Sun, H. M. Liu, X. Chen, D. G. Evans, W. S. Yang and X. Duan, *Adv. Mater.*, 2013, 25, 1125-1130.
- C. G. Hu, Y. Xiao, Y. Zhao, N. Chen, Z. P. Zhang, M. H. Cao and L. T. Qu, *Nanoscale*, 2013, 5, 2726-2733.
- 32. Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, Chem. Commun., 2012, 48, 10663-10665.
- W. Ai, Z. M. Luo, J. Jiang, J. H. Zhu, Z. Z. Du, Z. X. Fan, L. H. Xie, H. Zhang, W. Huang and T. Yu, *Adv. Mater.*, 2014, 26, 6186-6192.
- 34. W. H. Li, M. S. Li, M. Wang, L. C. Zeng and Y. Yu, *Nano Energy*, 2015, 13, 693-701.
- 35. W. Wang, Y. Sun, B. Liu, S. G. Wang and M. H. Cao, *Carbon*, 2015, **91**, 56-65.
- C. W. Kang, M. Patel, B. Rangasamy, K. N. Jung, C. L. Xia, S. Shi and W. Choi, *J. Power Sources*, 2015, 299, 465-471.
- L. Ren, K. N. Hui, K. S. Hui, Y. D. Liu, X. Qi, J. X. Zhong, Y. Du and J. P. Yang, Sci. Rep., 2015, 5, 14229.
- 38. S. L. Zhang, F. Yao, L. Yang, F. Z. Zhang and S. L. Xu, *Carbon*, 2015, 93, 143-150.
- 39. X. W. Liu, Y. Wu, Z. Z. Yang, F. S. Pan, X. W. Zhong, J. Q. Wang, L. Gu and Y. Yu, J. Power Sources, 2015, 293, 799-805.