Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supporting Information

In-situ Quantization of Ferroferric Oxide Embedded in Micro 3D

Carbon for Ultrahigh Performance Sodium-Ion Battery

Li-Ya Qi,^a Yi-Wei Zhang,^a Zi-Cheng Zuo,^b Yue-Long Xin,^a Cheng-Kai Yang,^a Bin Wu,^b Xin-Xiang

Zhang^a and Heng-Hui Zhou^{a*}

^a College of Chemistry and Molecular Engineering, Peking University,

Beijing, P. R. China.

^b Beijing Engineering Research Center of Power Lithium-ion Battery,

Beijing 102200

* Corresponding Author: E-mail: hhzhou@pku.edu.cn; wubin@pulead.com.cn

Fax & Tel: +861062757908.

Figure S1. a) SEM image of the as-prepared iron-based MOF composite. b) SEM image of

raspeberry-like microstructures anchored on graphene sheets. c) TEM image of Fe₃O₄ QD@C-

GN.

Figure S2. SEM image of bulk Fe_3O_4 -GN obtained under a similar condition.

Figure S3. a) TGA curves of Fe₃O₄ QD@C-GN and bulk Fe₃O₄-GN. b) refinement XRD patterns. c)

Raman spectra of $Fe_3O_4QD@C-GN$ and GO.

Method	Diameter	Thickness	Mass (Electrode)	Mass (Active Material)
Rolling	1.2 cm	10 µm	1 mg	1 mg
Slurry-casting	1.2 cm	30 µm	16 mg	5 mg

Table S1. Physical features of rolling and slurry-casting method

(b) Slurry-casting method

Figure S4. a) Schematic illustration of the preparation process of a "rolling" method and the obtained free-standing electrodes. b) The obtained electrodes through traditional slurry-casting method.

Figure S5. The first three cycles of CVs at a scanning rate of 0.1 mV s⁻¹.

Figure S6. a) CVs of bulk Fe_3O_4 -GN at a potential scanning rate from 0.1 to 10 mV s⁻¹. b) Peak

currents of various sweep rates. c) Peak currents vs. square root of sweep rate.

Figure S7. Rate capacity of Fe_3O_4 QD-GN electrode prepared through rolling and slurry-casting method by at different current densities.