Supporting Information

Fig. S1: (a) SEM of PUF. (b) the quality of Al current collector and (c) NCF current collector. (d) TEM of NCF.

Fig. S2: (a) TG of CNT/S composites and pure sulfur. (b) XRD of pure sulfur, NCF and NCF-CNT/S cathode. (c) N₂ adsorption-desorption isotherms of NCF-CNT/S (the inset of pore diameter distribution curves).

Fig. S3 (a) FESEM of CNT/S composites. (b) FESEM of the selection area. (c)-(d) EDS of CNT/S composites. (e) TEM images of CNT/S composites.

Fig. S4: Cycle performance of (a) the NCF-CS/S cathodes and Al-CS/S. (b) NCF-MC/S cathode and Al-MC/S

The carbon hollow spheres (CS) were prepared as previously reported.¹ Briefly, first, 0.08 g sodium dodecyl sulfate (SDS) and 3.5 g glucose were dissolved in 35 ml water and keep stirred for 10min to form a homogeneous solution. Then, transfered the solution into a 60 ml Teflon-lined stainless steel autoclave and hydrothermally treated at 160 °C for 16 h. Second, the puce products were centrifuged and washed with distilled water and absolute ethanol several times. The carbon precursor was obtained after oven-drying at 60 °C for 12 h. Finally, the final CS (Fig. S 5a[†]) was get after carbonized carbon precursor by heating at 800 °C for 2 h under N₂ flow with a heating rate of 5 °C min⁻¹ in a tube furnace.

Equally, the mesoporous carbon (MC) were prepared as previously reported.² 0.1 mol ferric nitrate (Fe(NO₃)₃) and 0.2 mol citric acid were added to 100mL deionized water and stired strongly for 30 min to make sure to form a homogeneous solution. The sol heated at 120 °C in the oven for 24 h, a gel with hierarchical structure was shaped and then calcined at 800 °C at a heating rate of 5 °C min⁻¹ under N₂ atmosphere for 2 h. The grey powder was then neutralized in 1 M H₂SO₄ to thoroughly etch away the decomposition products decomposed from Fe(NO₃)₂. The final MC (Fig. S 5b⁺) product was collected after filtration, repeated washing with deionized water and vacuum drying.

Fig. S5: SEM of (a) CS and (b) MF.

The CS/S composite, MC/S composite and the corrosponding NCF-C/S cathodes were the same to the CNTs/S composite and NCF-CNTs/S cathode, respectively.

Samples	Density (kg/m ³)	Fiber diameter	Mesh diameter	Main application	
Nano-foam	6.5-8.5	Dozens of nm	Dozens of nm	Cleaning supplies	
High density nano-foam	15-17	Dozens of nm	Dozens of nm	Cleaning supplies	
Common Foam	4-12	$\sim 5 \mu m$	10-30µm	Automobile or cosmetics	
This work	s work ~8		10-30µm	Construction industry	

Table S1. Physical properties and mainly applications of some others PU foam precursor

Samples	Sulfur loading	Sulfur loading Rate Specific capacity		EV	reference
	(mg/cm ²)	(C)	(mAh/g)	(kWh/L)	
3D CNT/graphene/sulfur	1.0	0.5	1150	2.93	3
hybrid sponge					
3D few-layer graphene foam	2.0	0.5	800	4.08	4
Nano-cellular carbon	2.2	0.5	1200	5.25	5
Pie-like electrode	3.6	0.5	800	5.7	6
Flexible all-carbon electrode	2.3	0.5	1000	5.85	7
Hollow carbon nanofibers	3.5	0.5	900	6.27	8
3D biomass derived active	5.1	0.5	950	9.64	9
carbon					
Carbon paper	6.7	0.5	800	10.66	10
This work	1.2	0.5	1124	5.37	
	1.8	0.5	1012	7.52	

Table S2. The specific volumetric energy density of 3D electrodes

Cycles	R1	CPE1-T	CPE1-P	R2	CPE2-T	CPE2-P	R3	W1-R	W1-T	W1-P
1	6.04	9.84e ⁻⁶	0.84	31.56	0.11	0.18	35.54	8.95	3.26	0.31
2	5.73	1.22e ⁻⁵	0.81	25.22	0.06	0.15	30.11	10.03	3.10	0.37
10	5.27	1.21e ⁻⁵	0.85	17.45	0.05	0.14	29.36	12.38	2.91	0.31
20	5.24	1.32e ⁻⁵	0.80	55.70	0.03	0.52	27.67	14.14	4.6	0.44
50	6.29	1.05e ⁻⁵	0.83	58.98	0.06	0.21	37.80	12.64	0.95	0.35
100	4.32	1.28e ⁻⁵	0.79	67.23	0.02	0.69	56.50	23.49	0.33	0.44

Table S3. Fitted values of the impedance spectra in Fig. 6c.

1 Y. Qu, Z. Zhang, X. Wang, Y. Lai, Y. Liu and J. Li, *J. Mater. Chem. A*, 2013, **1**, 14306-14310.

2 X. Tao, X. Chen, Y. Xia, Hui Huang, Y. Gan, R. Wu, F. Chen and W. zhang, *J. Mater. Chem. A*, 2013, **1**, 3295-3301.

J. He, Y. Chen, P. Li, F. Fu, Z. Wang and W. Zhang, *J. Mater. Chem. A*, 2015, **3**, 18605-18610.

4 K. Xi, P. R. Kidambi, R. Chen, C. Gao, X. Peng, C. Ducati, S. Hofmann and R. V. Kumar, *Nanoscale*, 2014, **6**, 5746-5753.

5 S.-H. Chung and A. Manthiram, J. Mater. Chem. A, 2013, 1, 9590-9596.

6 Z. Li, J. T. Zhang, Y. M. Chen, J. Li and X. W. Lou, Nat. Commun., 2015, 6, 8850-8857.

7 J.-Q. Huang, H.-J. Peng, X.-Y. Liu, J.-Q. Nie, X.-B. Cheng, Q. Zhang and F. Wei, *Journal of Materials Chemistry A*, 2014, **2**, 10869-10875.

8 Z. Li, J. Zhang and X. W. Lou, Angew. Chem. Int. Ed. Engl., 2015, 54, 12886-12890.

9 J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu and G. Du, *Electrochim. Acta*, 2014, **116**, 146-151.

10 J. Yan, X. Liu, H. Qi, W. Li, Y. Zhou, M. Yao and B. Li, Chem. Mater., 2015, 27, 6394-6401.