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Figure S1

Digital images acquired at different time interval of the reaction between HBr and KMnO4 

(molar ratio 5:1). (a) Before the addition of HBr, (b,c) after the addition: at 1 (b) and 2 h (c) 

of the reaction. (d) Digital image of the reaction mixture (10:1 molar ratio) after 2 h of the 

reaction. 

The digital image of the reaction mixture after 2 h shows the completion of the reaction. The 

yellow color of the supernatant is due to the Br2 evolution due to oxidation of Br. In 

presence of excess Br the as-produced MnO2 is completely reduced to Mn2+.

1 h 2 h with excess HBr
Before 

HBr addition

(a) (b) (c) (d)



3

Figure S2 

UV-vis spectra of (a) KMnO4 solution, (b) Br2 water, (c) Mn2+ in water and (d) supernatant 

solution obtained after the reaction in 5:1 molar ratio.  

The UV-vis spectrum of supernatant shows negative test for MnO4
, suggesting complete 

reaction of KMnO4 with HBr; the supernatant after completion of the reaction exhibit two 

peaks at 267 and 389 nm corresponding to Br2 in water.
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Figure S3

TEM (A, B) and HRTEM (C) images of MnO2 obtained at 1:1 molar ratio of KMnO4 and 

HBr.
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Figure S4

TEM (A, B) and HRTEM (C) images of MnO2 obtained at the molar ratio of 3:1 HBr and 

KMnO4.
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Figure S5

HRTEM images of as-synthesized mesoporous hierarchical δ-MnO2 nanostructure (obtained 

at 5:1 molar ratio). 
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Figure S6

Rate capability of the δ-MnO2 electrode in 1 M LiClO4 electrolyte.
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Figure S7

Cyclic voltammogram of mesoporous δ-MnO2 in 1 M LiClO4, Li2SO4, and LiNO3 

electrolytes at different scan rate (in three electrode system).
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Figure S8

Cyclic voltammetric profile of mesoporous δ-MnO2 in 1 M NaClO4, Na2SO4, and NaNO3 

electrolytes at different scan rate (in three electrode system). 
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Figure S9

Charge-discharge profile of the mesoporous δ-MnO2 in different electrolytes.
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Figure S10

Plot illustrating the cycling stability of various MnO2 nanostructures: (a) nanoseed, (b) 

urchin-like (c) 3D hierarchical nanostructures. The specific capacitance was obtained at the 

current density of 10 A/g in three electrode system. Electrolyte:  1 M aqueous LiClO4.
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Figure S11

Equivalent circuit used to fit the impedance data before and after 10000 consecutive charge-

discharge cycles.

Before charge-discharge After charge-discharge
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Figure S12

Cyclic voltammogram of activated carbon and mesoporous hierarchical δ-MnO2 

nanostructure in three-electrode system at a scan rate of 100 mV/sec. 

The electrodes for the asymmetric supercapacitor device were prepared by following the 

same procedure as the three-electrode cell experiments. The electroactive material loading on 

each electrode was controlled by maintaining the charge balance of the two electrodes. The 

charge accumulated in the cathode (Qc) should be equal to the anodic charge (Qa).

To maintain the equal charge balance, Qc=Qa,

mcCscΔVc = maCsaΔVa

where mc and ma are the mass of electrode material in the cathode and anode, respectively. Cs 

is the specific capacitance of the electrode material. ΔV is the potential window for charge 

discharge of the corresponding electrode material in three electrode system. 

Here, ΔVa = ΔVc = 1 V

mc/ma = Csa/Csc

The mass of the active material (mc) loaded on the Ni foam was ~1 mg. The specific 

capacitance of the -MnO2 is 362 F/g and the activated carbon is 132 F/g. The amount of 
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activated carbon taken for the anode is 2.75 mg. The two electrodes were kept in split cell 

and a filter paper soaked in LiClO4 (1 M) electrolyte was placed between two electrodes.
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Figure S13

Nyquist plot and corresponding equivalent circuit obtained with ASC. 
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Table S1

Summary of the recent literature on the synthesis of δ-MnO2

Article Synthetic strategy Surface area

Electrochim. Acta 
2014,116, 188

KMnO4 and thiophene kept in dichloromethane solution 
and stirred for 24 h at 4°C

226 m2g−1

Electrochim. Acta 
2014,127 410

KMnO4 solution having pH ~ 2 was poured into a beaker 
with the organic solution of dichloromethane and 

thiophene. The mixed solution was kept at 4℃ for 24 h.

237 m2g−1

J. Power Sources 
2012,198, 428

KMnO4 and MnSO4·H2O (molar ratio is 2:3) are dissolved 
in water and stirred to form a homogeneous solution, and 

then the mixture solution is transferred into a Teflon -lined 
autoclave assembled in microwave oven

213.6 m2g−1

ACS Appl. Mater. 
Interfaces 2009,1, 

1130

KMnO4 and NaOH in water mixed with aqueous solution 
of MnCl2·4H2O in 400 mL of water.

45 m2g−1

J. Mater. Chem., 
2010, 20, 390

30 mg of disordered mesoporous carbon were mixed with 
10 mL of aqueous KMnO4 solution of known concentration 

ranging from 0.001 M to 0.1 M and mixed for 5 min.

186 m2g−1 
(with 30% of 

MnO2)

Ind. Eng. Chem. 
Res. 2013, 52, 

9586

NaOH/MnCl2 reflux 49.11 m2g−1

J. Phys. Chem. C 
2008, 112, 7270

oxidation of the Mn(OH)2 by potassium persulfate K2S2O8 20 m2g−1

Sci. Rep. 2014, 4, 
3878

Reducing KMnO4 in autoclave, polycarbonate template. 85.2 m2g−1

J. Phys. Chem. B, 
2001, 105, 8712

Fumaric acid is added to a solution of NaMnO4 in a 1:3 
molar ratio. Product obtained through gelation takes 24 h

220 m2 g-1

J. Mater. Chem., 
2012, 22, 153

Graphitic nanorod by CVD + KMnO4 (64% MnO2) 113 m2g−1

Mater. Lett. 2010, 
64, 1763

KMnO4 and urea reacted for 24 h at 90°C 230 m2 g− 1

J. Phys. Chem. C, 
2007, 111, 18033

KMnO4 reduction by oleic acid for 10 h at 60 °C 70.70 m2g−1
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This work Room temperature reduction of KMnO4 by HBr within 2 h 238 m2g−1
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Table S2

Specific capacitance of mesoporous δ-MnO2 in different electrolytic solution at different 
current density.

Capacitance value (F/g)Electrolyte
1 A/g 2 A/g 5 A/g 10 A/g 20 A/g

LiClO4 364 332 290 261 235

Li2SO4 348 326 270 248 226

LiNO3 321 266 240 208 170

NaClO4 288 264 242 200 182

Na2SO4 282 254 220 190 180

NaNO3 214 186 155 140 120


