Supporting Information

Facile Shape-Controlled Growth of Hierarchical Mesoporous δ-MnO₂ for the Development of Asymmetric Supercapacitor

Sourav Bag and C. Retna Raj*

Functional Materials and Electrochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur721302, India. E-mail: crraj@chem.iitkgp.ernet.in; Fax: +91 3222-282252; Tel: +91 3222-283348

Digital images acquired at different time interval of the reaction between HBr and $KMnO_4$ (molar ratio 5:1). (a) Before the addition of HBr, (b,c) after the addition: at 1 (b) and 2 h (c) of the reaction. (d) Digital image of the reaction mixture (10:1 molar ratio) after 2 h of the reaction.

The digital image of the reaction mixture after 2 h shows the completion of the reaction. The yellow color of the supernatant is due to the Br_2 evolution due to oxidation of Br^- . In presence of excess Br^- the as-produced MnO₂ is completely reduced to Mn^{2+} .

UV-vis spectra of (a) KMnO₄ solution, (b) Br_2 water, (c) Mn^{2+} in water and (d) supernatant solution obtained after the reaction in 5:1 molar ratio.

The UV-vis spectrum of supernatant shows negative test for MnO_4^- , suggesting complete reaction of KMnO₄ with HBr; the supernatant after completion of the reaction exhibit two peaks at 267 and 389 nm corresponding to Br₂ in water.

TEM (A, B) and HRTEM (C) images of MnO_2 obtained at 1:1 molar ratio of $KMnO_4$ and HBr.

TEM (A, B) and HRTEM (C) images of MnO₂ obtained at the molar ratio of 3:1 HBr and KMnO₄.

HRTEM images of as-synthesized mesoporous hierarchical δ -MnO₂ nanostructure (obtained at 5:1 molar ratio).

Rate capability of the δ -MnO₂ electrode in 1 M LiClO₄ electrolyte.

Cyclic voltammogram of mesoporous δ -MnO₂ in 1 M LiClO₄, Li₂SO₄, and LiNO₃ electrolytes at different scan rate (in three electrode system).

Cyclic voltammetric profile of mesoporous δ -MnO₂ in 1 M NaClO₄, Na₂SO₄, and NaNO₃ electrolytes at different scan rate (in three electrode system).

Charge-discharge profile of the mesoporous δ -MnO₂ in different electrolytes.

Plot illustrating the cycling stability of various MnO_2 nanostructures: (a) nanoseed, (b) urchin-like (c) 3D hierarchical nanostructures. The specific capacitance was obtained at the current density of 10 A/g in three electrode system. Electrolyte: 1 M aqueous LiClO₄.

Equivalent circuit used to fit the impedance data before and after 10000 consecutive chargedischarge cycles.

Before charge-discharge

After charge-discharge

Cyclic voltammogram of activated carbon and mesoporous hierarchical δ -MnO₂ nanostructure in three-electrode system at a scan rate of 100 mV/sec.

The electrodes for the asymmetric supercapacitor device were prepared by following the same procedure as the three-electrode cell experiments. The electroactive material loading on each electrode was controlled by maintaining the charge balance of the two electrodes. The charge accumulated in the cathode (Q_c) should be equal to the anodic charge (Q_a).

To maintain the equal charge balance, $Q_c=Q_a$,

$$m_c C s_c \Delta V_c = m_a C s_a \Delta V_a$$

where m_c and m_a are the mass of electrode material in the cathode and anode, respectively. Cs is the specific capacitance of the electrode material. ΔV is the potential window for charge discharge of the corresponding electrode material in three electrode system.

Here,
$$\Delta V_a = \Delta V_c = 1 V$$

$$m_c/m_a = Cs_a/Cs_c$$

The mass of the active material (m_c) loaded on the Ni foam was ~ 1 mg. The specific capacitance of the δ -MnO₂ is 362 F/g and the activated carbon is 132 F/g. The amount of

activated carbon taken for the anode is 2.75 mg. The two electrodes were kept in split cell and a filter paper soaked in $LiClO_4$ (1 M) electrolyte was placed between two electrodes.

Nyquist plot and corresponding equivalent circuit obtained with ASC.

Table S1

Summary of the recent literature	on the synthesis of δ -MnO ₂
----------------------------------	--

Article	Synthetic strategy	Surface area	
<i>Electrochim. Acta</i> 2014, 116, 188	KMnO ₄ and thiophene kept in dichloromethane solution and stirred for 24 h at 4°C	226 m ² g ⁻¹	
<i>Electrochim. Acta</i> 2014, 127 410	KMnO ₄ solution having pH ~ 2 was poured into a beaker with the organic solution of dichloromethane and thiophene. The mixed solution was kept at 4°C for 24 h.	237 m ² g ⁻¹	
<i>J. Power Sources</i> 2012, 198 , 428	KMnO ₄ and MnSO ₄ ·H ₂ O (molar ratio is 2:3) are dissolved in water and stirred to form a homogeneous solution, and then the mixture solution is transferred into a Teflon -lined autoclave assembled in microwave oven	213.6 m ² g ⁻¹	
ACS Appl. Mater. Interfaces 2009,1, 1130	KMnO ₄ and NaOH in water mixed with aqueous solution of MnCl ₂ ·4H ₂ O in 400 mL of water.	$45 \text{ m}^2\text{g}^{-1}$	
<i>J. Mater. Chem.</i> , 2010, 20 , 390	30 mg of disordered mesoporous carbon were mixed with 10 mL of aqueous KMnO ₄ solution of known concentration ranging from 0.001 M to 0.1 M and mixed for 5 min.	186 m ² g ⁻¹ (with 30% of MnO ₂)	
Ind. Eng. Chem. Res. 2013, 52 , 9586	NaOH/MnCl ₂ reflux	49.11 m ² g ⁻¹	
J. Phys. Chem. C 2008, 112 , 7270	oxidation of the $Mn(OH)_2$ by potassium persulfate $K_2S_2O_8$	$20 \text{ m}^2\text{g}^{-1}$	
<i>Sci. Rep.</i> 2014, 4 , 3878	Reducing KMnO ₄ in autoclave, polycarbonate template.	85.2 m ² g ⁻¹	
<i>J. Phys. Chem. B</i> , 2001, 105 , 8712	Fumaric acid is added to a solution of $NaMnO_4$ in a 1:3 molar ratio. Product obtained through gelation takes 24 h	220 m ² g ⁻¹	
<i>J. Mater. Chem.</i> , 2012, 22 , 153	Graphitic nanorod by CVD + KMnO ₄ (64% MnO ₂)	113 m ² g ⁻¹	
<i>Mater. Lett.</i> 2010, 64 , 1763	KMnO ₄ and urea reacted for 24 h at 90°C	$230 \text{ m}^2 \text{ g}^{-1}$	
J. Phys. Chem. C, 2007, 111 , 18033	KMnO ₄ reduction by oleic acid for 10 h at 60 °C	70.70 m ² g ⁻¹	

This work	Room temperature reduction of KMnO ₄ by HBr within 2 h	$238 \text{ m}^2\text{g}^{-1}$

Table S2

Specific	capacitance	of	mesoporous	δ-MnO ₂	in	different	electrolytic	solution	at	different
current d	ensity.									

Electrolyte	Capacitance value (F/g)								
	1 A/g	2 A/g	5 A/g	10 A/g	20 A/g				
LiClO ₄	364	332	290	261	235				
Li ₂ SO ₄	348	326	270	248	226				
LiNO ₃	321	266	240	208	170				
NaClO ₄	288	264	242	200	182				
Na_2SO_4	282	254	220	190	180				
NaNO ₃	214	186	155	140	120				