Supporting Information

Alkali-stable and highly anion conducting poly(phenylene oxide)s carrying quaternary piperidinium cations

Hai-Son Dang and Patric Jannasch*

Polymer & Materials Chemistry, Department of Chemistry, Lund University

P.O. Box 124, SE-221 00, Lund, Sweden

E-mail: patric.jannasch@chem.lu.se

Figure S1. Typical SEC traces of native and bromoalkylated PPO, indicating increased M_n and PDI value by the appearance of high-molecular weight fractions after the bromoalkylation.

Figure S2. DSC heating traces of native and bromoalkylated PPOs (PPO-7Br-DB).

Figure S3. Photographs showing membrane PPO-7bisQPi-1.8Br in the 180° folded (upper) and load bearing (lower) state. The weight of the micrometer was 180 g and the membrane was seemingly unaffected after this treatment.

Figure S4. TGA traces of AEMs in the Br⁻ form before and after the alkaline treatment in 1 M NaOH at 90 °C for 192 h, (a) PPO with mono-QPi functional side chains, (b) PPO with bis-QPi functional side chains, and (c) crosslinked bis-QPi functional PPO (please note the high degree of overlap).

Figure S5. Water uptake of the fully hydrated (immersed) AEMs in the Br^- form as a function of temperature.

Figure S6. Br⁻ conductivity data measured by EIS of mono- and bis-QPi functionalized PPO AEMs under fully hydrated (immersed) conditions.

Figure S7. TGA traces of crosslinked AEMs based on PPO-7Br-20 after the first step (denoted "intermediate") and of the final PPO-7QPi-*x*-*y* membranes after the second (final) step. Samples measured under N_2 at 10 °C min⁻¹ in the Br⁻ form.

Figure S8. TGA traces of crosslinked AEMs based on PPO-7Br-30 after the first step (denoted "intermediate") and of the final PPO-7QPi-*x*-*y* membranes after the second (final) step. Samples measured under N_2 at 10 °C min⁻¹ in the Br⁻ form.