Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Fig. S1 Selected-area electron diffraction (SAED) pattern of the stable mesoporous black TiO_2 hollow spheres.

Fig. S2 N_2 adsorption-desorption isotherms (A) and the corresponding Barrett–Joyner–Halenda (BJH) pore size distribution plots (B) of the stable mesoporous black TiO₂ hollow spheres (a) and stable mesoporous TiO₂ hollow spheres (b).

Fig. S3 The optical bandgaps of the stable mesoporous black TiO_2 hollow spheres (a) and stable mesoporous TiO_2 hollow spheres (b). The insets are the photos of (a) and (b).

Fig. S4 The diameters evolution of the stable mesoporous black TiO_2 hollow spheres with different amounts of Ti precursors (TBOT). (a~500 nm: 0.06 g; b~600 nm: 0.08 g; c~700 nm: 0.10 g; d~800 nm: 0.12 g; e~900 nm: 0.14 g; f~1000 nm: 0.16 g)

Fig. S5 The Ti 2p (A), O 1s (B) and valence band X-ray photoelectron spectra (C) of the stable mesoporous black TiO_2 hollow spheres (a) and stable mesoporous TiO_2 hollow spheres (b).

Fig. S6 XRD patterns of mesoporous TiO_2 hollow spheres with (A) and without ethylenediamine encircling treatment (B) after being calcined at different temperatures (500, 600, 700, 800 and 900 °C).

Fig. S7 Raman spectra of the mesoporous TiO_2 hollow spheres with (A) and without ethylenediamine encircling treatment (B) after being calcined at different temperatures (500, 600, 700, 800 and 900 °C).

Fig. S8 N_2 adsorption-desorption isotherms (A) and the corresponding Barrett–Joyner–Halenda (BJH) pore size distribution plots (B) of the mesoporous TiO₂ hollow spheres after ethylenediamine encircling treatment and being calcined at different temperatures (500, 600, 700, 800 and 900 °C).

Fig. S9 SEM images of the mesoporous TiO_2 hollow spheres with (a, b, c) and without ethylenediamine encircling treatment (d, e, f) after being calcined at the temperature of 500 °C (a, d), 700 °C (b, e), 900 °C (c, f).

Fig. S10 The N 1s X-ray photoelectron spectra of the stable mesoporous TiO_2 hollow spheres with different pretreatment after being calcined at 600 °C, trimethylamine (a), *n*-butylamine (b), isopropylamine (c), ammonium hydroxide (d), hexamethylenetetramine (e), ethylenediamine (f).

Fig. S11 SEM images (a-e) and XRD patterns (f) of the stable mesoporous black TiO_2 hollow spheres with different pretreatment after being calcined at 600 °C in air and hydrogen gas annealingat 600 °C. Trimethylamine (a), Isopropylamine (b), *n*-Butylamine (c), Hexamethylenetetramine (d), Ammonium Hydroxide (e).

Fig. S12 Surface photovoltage spectroscopy (SPS) of the stable mesoporous black TiO_2 hollow spheres (a) and stable mesoporous TiO_2 hollow spheres (b).

Fig. S13 Photocatalytic hydrogen evolution of the stable mesoporous black TiO_2 hollow spheres (a), stable mesoporous TiO_2 hollow spheres (b) and black TiO_2 nanoparticles (c) under AM 1.5.

Fig. S14 Photocatalytic hydrogen evolution of the mesoporous black TiO_2 hollow spheres without and with different pre-treatment after being calcined at 600 °C and hydrogen gas annealingat 600 °C (under AM 1.5).

Fig. S15 The H_2 generation rate of the stable mesoporous black TiO_2 hollow spheres (a, c), and stable mesoporous TiO_2 hollow spheres (b, d) under AM 1.5 without Pt as a co-catalyst and in pure water system, respectively.

Table S1 The tex	tual properti	ies of the	mesoporou	s TiO ₂ h	ollow s	spheres	with and
without ethylenedi	amine (EN)	encircling	treatment	after bei	ing calc	ined at	different
temperatures.							
~			0 1				

Calcination	BET surface area (m ² g ⁻¹)		Pore size (nm)		
temperature	EN treated	Untreated	EN treated	Untreated	
500 °C	113.6	108.4	7.91	9.33	
600 °C	106.4	40.5	10.65	12.65	
700 °C	100.8	31.5	11.06	13.11	
800 °C	55.3	23.7	12.23	14.76	
900 °C	25.8	4.3	14.97	-	

Pretreatment	Crystal phase/ Particle size (nm)	BET surface area (m ² g ⁻¹)	Pore size (nm)	Pore volume (cm ³ g ⁻¹)
None	Anatase / 21.2	40	11.9	0.12
Ethylenediamine	Anatase / 10.6	106	10.6	0.23
Trimethylamine	Anatase / 10.8	101	9.3	0.23
Isopropylamine	Anatase / 11.9	95	9.9	0.23
n-Butylamine	Anatase / 13.2	80	9.5	0.21
Hexamethylenetetramine	Anatase / 12.1	93	9.8	0.23
Ammonium Hydroxide	Anatase / 12.6	86	9.3	0.21

Table S2 The textual properties of the mesoporous TiO_2 hollow spheres with and without different pretreatment after being calcined at 600 °C.

Table S3 Photocatalytic hydrogen evolution of the stable mesoporous black TiO_2 hollow spheres with different diameters under AM 1.5.

Diameter (nm)	500	600	700	800	900	1000
H ₂ evolution $(\mu mol h^{-1} 0.1 g^{-1})$	178	227	241	208	182	160

Table S4 Photocatalytic hydrogen evolution of the stable mesoporous black TiO_2 hollow spheres with different wall thicknesses under AM 1.5.

Wall thickness (nm)	35	55	75	95	115
H ₂ evolution $(\mu mol h^{-1} 0.1 g^{-1})$	185	230	241	203	169