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thermal analysis the heating rates were varied (2, 5 and 10 °C min-1), while the other 

variables were kept constant in order to understand the influence of the heating rate on the 

LHT to N-LTO phase transition (Figure S2a). Upon increasing the heating rate, not only was 

the DTA signal intensified, but also the DTA peaks shifted to higher temperatures, whereas 

the shape of the TGA and DTA curves did not change significantly. Generally, the 

temperature peak at which the thermal events occur is influenced by the change of the heating 

rate because of heat and mass transfer hysteresis. For instance, the temperature for the surface 

water vaporization at a heating rate of 10 °C min-1 appeared at approximately 120 °C, but at a 

2 °C min-1 heating rate, it took place around 58 °C (Figure S2a). At a high heating rate, the 

peaks in the DTA curves were more intense because of faster release/absorption of energy in 

a shorter time (exothermic or endothermic thermal events). The same thermal curves were 

found for all three heating rates (Figure S2a): two endothermic peaks (in the ranges 50-120 

°C and 200-270 °C), followed by a small exothermic peak (340-370 °C), and a final 

endothermic peak (475-520 °C). For the in situ HTXRD analysis, a slow heating rate of 2 °C 

min-1 was required because of the limitation on the resolution obtained from the signal 

collector of the HTXRD. 

Figure S2b presents the thermal analysis at a heating rate of 5 °C min-1 including the 

derivative thermogravimetry (DTG) curve, highlighting the similarity of the DTG curve with 

the DTA curve. Note that the DTG and DTA peaks are almost coincident. For example, the 

exothermic event at ~369 °C in the DTA curve was reflected in the derivative curve at ~366 

°C with a minimal error of 0.8 %. However, it has to be considered that while the DTG peaks 

pointed downwards, the DTA peaks pointed downwards or upwards, depending on whether 

the event was endothermic or exothermic. The inflection points of the TGA curve closely 

coincide with DTA peaks because the maximum rate of loss in mass occurs at the DTA peak 

with short delay. In this study, DTG was used to interpret the thermal analysis, because the 

low intensity of the DTA signal at the slow heating rate (2 °C min-1) was easily confused with 

the noise of the instrument.  
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