Supporting Information

Facile synthesis of hierarchical porous Co₃O₄ nanoboxes as the efficient cathode catalysts for Li-O₂ batteries

Jian Zhang, $\ddagger^{a, b}$ Zhiyang Lyu, \ddagger^{b} Feng Zhang, $\ddagger^{b, c}$ Liangjun Wang,^d Peng Xiao,^b Kaidi Yuan,^d Min Lai,^a and Wei Chen *^{b,d, e}

a. School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

b. Department of Chemistry, National University of Singapore 3 Science Drive 3, 117543, Singapore. *E-mail: phycw@nus.edu.sg

c. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, China.

d. Department of Physics National University of Singapore 2 Science Drive 3, 117542 Singapore

e. National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu Prov. 215123, China

‡These authors contributed equally to this work.

Fig. S1 EDX spectra of the PBAs precursors (a) before and (b) after the NaOH treatment.

Fig. S2 XPS spectra of (a) K, (b) Fe and (c) N elements for the PBAs precursor before (black) and after (red) NaOH treatment.

Fig. S3 XPS Co 2p core level spectra of (a) porous PBAs precursors and (b) hollow Co₃O₄ nanoboxes.

Fig. S4 First discharge-charge curves of Li-O_2 batteries with (a) porous porous Co_3O_4 nanoboxes and (b) EC-300J carbon electrodes at various current densities; (c) Discharge capacity retention of Li-O_2 battery cells with different electrodes at various current densities.

Fig. S5 Cyclic performance of EC-300J carbon electrodes at 0.16 mA cm⁻² with limited capacity of (a) 500 mAh g^{-1} and (b)1000 mAh g^{-1} , respectively.