Supporting information

Hydrogen Gas-Assisted Synthesis of Wormlike PtMo Wavy Nanowires as Efficient Catalyst for Methanol Oxidation Reaction

Shuanglong Lu,^a Kamel Eid,^{b,c,d} Ming Lin,^e Liang Wang,^b Hongjing Wang,^{*b} Hongwei Gu^{*a}

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.

^b College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R.

China. ^c State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese

^d University of Chinese Academy of Sciences, Beijing 100039, P.R. China. ^e Institute of Materials Research and Engineering, A*star (Agency for Science, Technology and Research), 3 Research Link, S117602, Singapore.

*E-mail: hongwei@suda.edu.cn;

hjw@zjut.edu.cn

Figure S1. XPS spectra of the PtMo nanowires and Pt nanoparticles.

Figure S2. Typical TEM images of nanostructures prepared using the standard procedure with varying amounts of Mo precursors: 0 mmol (A); 0.0625 mmol (B); 0.25 mmol (C); 4-tert-butyltoluene (D); 1-octadecene (E) and at 180°C (F).

Figure S3. PtMo nanoparticles prepared by via normal atmosphere H_2 gas (A); by using N_2 instead of H_2 (B), and by normal atmosphere N_2 gas (C).

Figure S4. TEM images of the Mo-doped Pt nanowire networks when the reaction time was 3

h.

Figure S5. TEM images of **(a, b)** PtMo nanowires and **(c, d)** commercial Pt/C catalyst before and after 2,000 potential durability cycles, respectively.