- 1 Electronic Supplementary Information (ESI) for
- 2

| 3             | Carbon Composite Spun Fibers with In-Situ Formed Multicomponent                                                                                                                                                                                     |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4             | Nanoparticles for Enhanced Performance Lithium-ion Battery Anode                                                                                                                                                                                    |
| 5             |                                                                                                                                                                                                                                                     |
| 6             | Hailong Lyu, <sup>a,b</sup> Jiurong Liu, <sup>*a</sup> Song Qiu, <sup>a</sup>                                                                                                                                                                       |
| 7             | Yonghai Cao, <sup>b</sup> Chenxi Hu, <sup>a</sup> Shimei Guo <sup>a</sup> and Zhanhu Guo* <sup>b</sup>                                                                                                                                              |
| 8             |                                                                                                                                                                                                                                                     |
| 9<br>10<br>11 | <sup>a</sup> Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of<br>Education and School of Materials Science and Engineering, Shandong University, Jinan,<br>Shandong 250061, People's Republic of China |
| 12<br>13      | <sup>b</sup> Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular<br>Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States                                                                       |
| 14            | *Corresponding author. E-mail: jrliu@sdu.edu.cn (J. L.); zguo10@utk.edu (Z. G.).                                                                                                                                                                    |
| 15            |                                                                                                                                                                                                                                                     |



| Methods                           | Raw<br>materials                                      | Cost                                         | Productivity                                            | Length-<br>diameter<br>ratio | Repeatability                                     |
|-----------------------------------|-------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|------------------------------|---------------------------------------------------|
| Wet-<br>spinning <sup>1</sup>     | Polymer<br>solution with<br>high viscosity            | High cost due<br>to the complex<br>process   | Limited by<br>viscous drag<br>and diffusion<br>velocity | Very<br>high                 | Good                                              |
| Electro-<br>spinning <sup>2</sup> | Polymer<br>solution or<br>melt mix with<br>inorganics | High energy<br>cost                          | Low output<br>due to low<br>spinning speed              | High                         | Limited by<br>various<br>technical<br>parameters  |
| Template <sup>3</sup>             | Templates<br>and<br>precursors                        | High cost due<br>to templates<br>removing    | Limited by<br>templates and<br>reaction rate            | Low                          | Depended on templates                             |
| Hydro-<br>thermal <sup>4</sup>    | Inorganic<br>precursors<br>and catalysts              | High cost due<br>to high level<br>device     | Limited by<br>reaction time<br>and device               | Low                          | Limited by<br>sensitive<br>reaction<br>conditions |
| Force-<br>spinning <sup>5</sup>   | Polymer<br>solution or<br>melt                        | High cost due<br>to the complex<br>device    | High                                                    | High                         | Good                                              |
| Dry-<br>spinning<br>(this work)   | Polymer<br>solution or<br>melt mix with<br>inorganics | Low cost<br>(simple device<br>and materials) | Very high<br>(3-5 g/min)                                | Very<br>high                 | Good<br>(facile technical<br>parameters)          |

 Table. S1 Comparison of nanofibers fabrication methods.

1

2



2 Fig. S1. Nyquist plots of FC, TC and FTC (a) before cycling process and (b) after 200 cycles.

To clarify the electrical conductivity of the FC, TC and FTC composite fibers, electrochemical 3 impedance spectroscopy (EIS) was measured for the cells before and after cycling (Fig. S1). 4 5 Generally, the Nyquist plots consist of a semicircle in the high and medium frequency and a 6 sloped line in the low frequency. The diameter of the semicircle is in direct proportion to the charge-transfer impedance including electrolyte resistance ( $R_e$ ), surface film resistance ( $R_{sf}$ ), and 7 charge transfer resistance (R<sub>ct</sub>).<sup>6</sup> The slope of the inclined line is in inverse proportion to the 8 Warburg impedance  $(Z_w)$  associated with Li-ion diffusion process within the electrode.<sup>7</sup> As 9 displayed in Fig. S1a, the resistance values before the discharge/charge process are ca. 112  $\Omega$  of 10 11 FC, 310  $\Omega$  of TC, and 290  $\Omega$  of FTC. Apparently, the tendency of electrical conductivity is FC>FTC>TC, indicating that Fe<sub>3</sub>C indeed enhanced the electronic conductivity, and conversely 12 13 TiO<sub>2</sub> hindered the charge transfer of the anodes. After 200 discharge/charge cycles, the Nyquist 14 plots of the anodes have some changes (Fig. S1b). The charge transfer impedances of FC, TC and FTC have become to 173, 305 and 167  $\Omega$ , respectively. It is found that the resistance value 15 of FC increased obviously from 112 to 173  $\Omega$ , which can be attributed to the electrode structural 16 damage due to the large volume variation of Fe<sub>3</sub>O<sub>4</sub> during cycling. By contrast, the electrical 17

1 conductivity of TC has hardly changed (310 to 305  $\Omega$ ), suggesting the superior electrode stability 2 of TiO<sub>2</sub> during cycling. For FTC, the electronic impedance has a distinct decrease from 290 to 167  $\Omega$ , which proves the synergetic effect within FTC anode further. On one hand, Fe<sub>3</sub>C 3 4 catalytically activates the anode, thereby improving the electrical conductivity during cycling. 5 On the other hand,  $TiO_2$  effectively restrains the electrode destroy resulting from volume change. 6 Therefore, due to the synergetic effect of every component, FTC reveals the best electrical 7 conductivity among all the three anodes after 200 cycles. Meanwhile, the oblique lines of all the three anodes, no matter before or after cycling, exhibit almost the same slope at low frequency, 8 9 suggesting that there are no obvious differences on the lithium ion diffusion in all samples. This phenomenon indicates the lithium ion diffusions in these anodes are dependent on the stable 10 11 carbon fiber matrix.

## 12 **References:**

13 1 S. J. Pomfret, P. N. Adams, N. P. Comfort and A. P. Monkman, *Polymer*, 2000, 41, 2265-2269.

14 2 D. Zhang, A. B. Karki, D. Rutman, D. P. Young, A. Wang, D. Cocke, T. H. Ho and Z. Guo, *Polymer*, 2009, **50**, 4189-4198.

- 16 3 F. Cheng, Z. Tao, J. Liang and J. Chen, Chem. Mater., 2008, 20, 667-681.
- 17 4 D. Su, H. Kim, W. Kim and G. Wang, Chemistry a European Journal, 2012, 18, 8224-8229.
- 18 5 S. Padron, A. Fuentes, D. Caruntu and K. Lozano, J. Appl. Phys., 2013, 113, 24318.
- 19 6 G. Lu, S. Qiu, J. Liu, X. Wang, C. He and Y. Bai, *Electrochim. Acta*, 2014, 117, 230-238.
- 20 7 H. Lv, S. Qiu, G. Lu, Y. Fu, X. Li, C. Hu and J. Liu, *Electrochim. Acta*, 2015, 151, 214-221.
  21