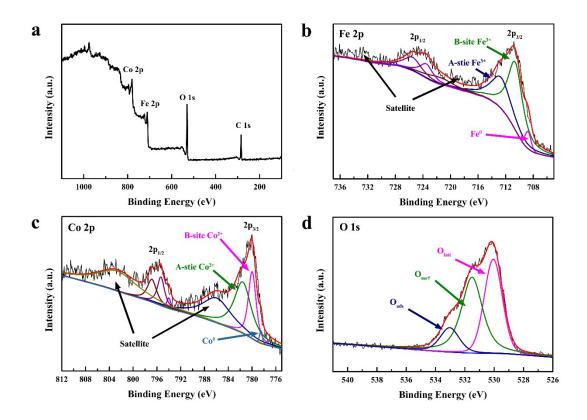
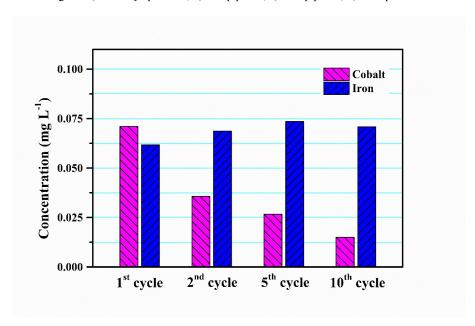
Electronic Supporting Information for

One-pot hydrothermal synthesis of octahedral CoFe/CoFe₂O₄ submicron composite as heterogeneous catalysts with enhanced peroxymonosulfate activity


Haiming Sun, Xijia Yang, Lijun Zhao*, Tianhao Xu, Jianshe Lian*

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.


*Corresponding author:

Name: Dr. Lijun Zhao and Dr. Jianshe Lian

E-mail: <u>lijunzhao@jlu.edu.cn</u>; <u>lianjs@jlu.edu.cn</u>

Fig. S1 X-ray photoelectron spectroscopy of CoFe/CoFe₂O₄ composite after ten cycles of PMS activation for the degradation of Orange II: a) a survey spectrum, b) Fe 2p peaks, c) Co 2p peaks, d) O 1s peaks.

Fig. S2 Concentrations of dissolved Cobalt and Iron leached from CoFe/CoFe₂O₄ composite at 5 min in the 1st, 2nd, 5th and 10th cycles. (Degradation reaction conditions: [Orange II]=60 mg L⁻¹, [PMS]=1.5 g L⁻¹, [catalyst]=0.05 g L⁻¹, pH=7.0 and T=20 °C.)

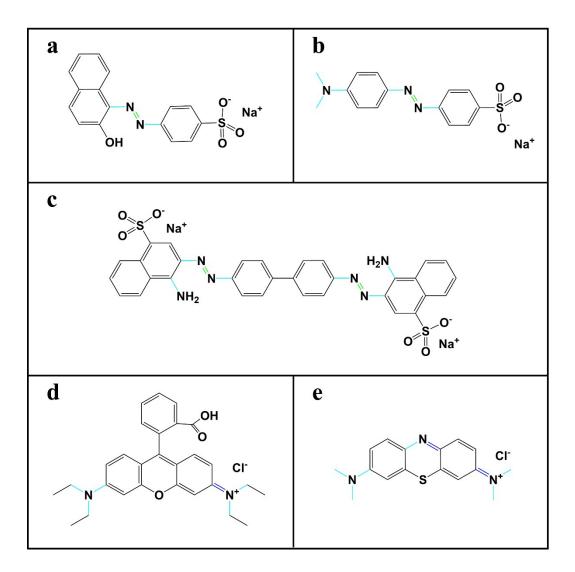


Fig. S3 Molecular structures: a) Orange II, b) Methyl Orange, c) Congo Red, d) Rhodamine B and e) Methylene Blue.

 $\textbf{Table S1} \ \text{Numbers of C=N double bond}, \ \text{N=N double bond and C-N bond in the five dyes}.$

Bond (Bonding energy)	C=N (615 kJ mol ⁻¹)	N=N (418 kJ mol ⁻¹)	C-N (293 kJ mol ⁻¹)
Orange II	0	1	2
Methyl Orange	0	1	5
Congo Red	0	2	6
Rhodamine B	1	0	5
Methylene Blue	2	0	6