Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

SUPPLEMENTARY INFORMATION

Efficient Ceria Nanostructures for Enhanced Solar Fuel Production via High-Temperature

Thermochemical Redox Cycles

Xiang Gao¹, Alejandro Vidal², Alicia Bayon³, Roman Bader², Jim Hinkley³, Wojciech Lipiński^{2*}, Antonio Tricoli^{1*}

¹Nanotechnology Research Laboratory, the Australian National University, Canberra ACT 2601, Australia ²Solar Thermal Group, the Australian National University, Canberra ACT 2601, Australia ³CSIRO Energy Technology, P. O. Box 330, Newcastle, NSW 2300, Australia

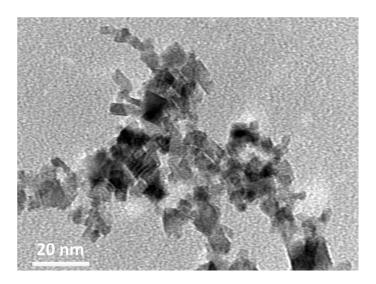
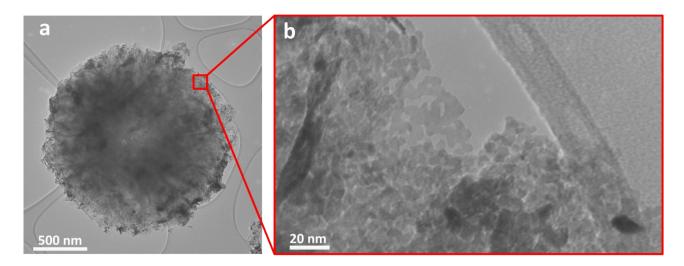
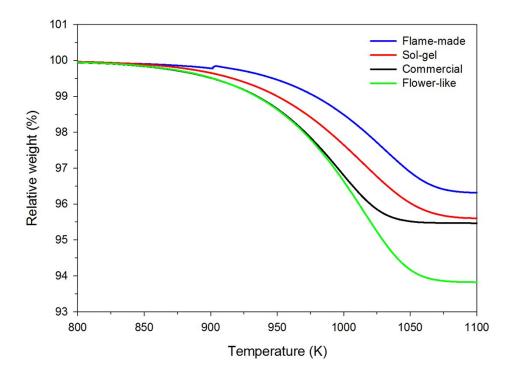


Figure S1. TEM images of the as-prepared flame-made agglomerates showing primary particles of 6-13

nm.

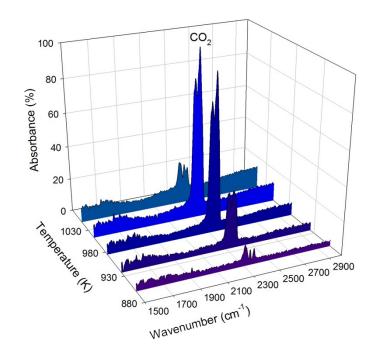

Figure S2. TEM micrographs of the as-prepared flower-like agglomerates showing (a) a single flower-like spherical agglomerate, and (b) the primary particles.

Figure S3. H₂ and CO production rates of the (a) flame-made ceria and (b) commercial ceria during 15 isothermal MPO-CDS cycles at 1173 K.

Figure S4a. TGA profile in air of the flame-made (blue), flower-like (green), sol-gel (red) and commercial (black) ceria after 10 MPO-CDS cycles. Measurement conditions: heating rate 5 K min⁻¹, air flow rate 100 mL min⁻¹, sample size 25-35 mg.

Figure S4b. FTIR-EGA profile of CO₂ evolution during the temperature programmed oxidation of the flame-made ceria after 10 MPO-CDS cycles. CO₂ production is attributed to oxidation of the carbon deposits.