Hollow porous nanoparticles with Pt skin on Ag-Pt alloy structure as highly active electrocatalyst for oxygen reduction reaction

Tao Fu, Jun Fang*, Chunsheng Wang, and Jinbao Zhao*

Figure S1 UV-Vis absorption spectrum of Ag nanoparticles (Ag NPs), Ag@Pt, and HP-Ag/Pt.

Figure S2 Typical TEM images (a, b), SAED pattern (c) and size distribution histogram (d) of Ag nanoparticles.

Figure S3 Typical EDS spetra of the HP-Ag/Pt and Ag@Pt nanoparticles.

Table S1 ICP	Results of HP	-Ag/Pt and	Ag@Pt N	lanoparticles	(both load	ed on '	Vulcan
XC-72R).							

Material	ρ _{Ag} (μg/mL)	ρ _{Pt} (μg/mL)	с _{Ag} (µmol/mL)	c _{pt} (µmol/mL)	Atom ratio (Ag to Pt)	Pt % in nanoparticles + carbon support
HP-Ag/Pt	10.7613	44.5684	0.0998	0.2285	30:70	39.8%
	10.9290	41.9928	0.1013	0.2153	32:68	40.1%
Ag@Pt	48.5758	77.2287	0.4503	0.3959	53:47	40.5%
	46.8397	72.1411	0.4342	0.3699	54:46	39.9%

Figure S4 XPS survey spectrum of HP-Ag/Pt (a), Ag@Pt (b) and Pt/C (c), and high-resolution Ag 3d spectra for Ag@Pt (d) and HP-Ag/Pt (e).

Material	Area (Pt _{4f})	Sensitive factor† of Pt _{4f(Area)}	Area (Ag _{3d})	Sensitive factor† of Ag _{3d(area)}	Atom ratio (Ag to Pt)
HP-Ag/Pt	26658		9411		23:77
Ag@Pt	9926	4.4	5521	5.2	31:69
Ag@Pt after ADT	19864		17707		43:57

Table S2 XPS Quantification Results of HP-Ag/Pt, Ag@Pt and Ag@Pt after accelerated durability test samples.

[†]Data acquired from "Practical Surface Analysis", Vol. 1., 2nd Edition, by C. D. Wagner, eds. D. Briggs and M.P. Seah, Published by J. Wiley and Sons in 1990, ISBN 0-471-92081-9.

Figure S5 Typical TEM images and size distribution histogram of the HP-Ag/Pt on VC-72R (a, b, c) and Ag@Pt on VC-72R (d, e, f).

Figure S6 (a) Cyclic voltammograms of HP-Ag/Pt, Ag@Pt and Pt/C at a scan rate of 50 mV s⁻¹ in N₂ saturated 0.1M HClO₄ at room temperature and a scan rate of 50 mV s⁻¹. (b) The electrochemical surface area (calculated from Hupd) of initial and after accelerated durability test (ADT), normalized by Pt mass. (c, d, e) CVs of catalysts in N₂-saturated 0.1 M HClO₄ solutions before and after accelerated durability test. (f) CO stripping voltammograms of the HP-Ag/Pt, Ag@Pt and Pt/C catalysts in 0.1M HClO₄ solution at a sweep rate of 50 mV s⁻¹.

Catalyst	Pt loading (μg/cm ²)	*ECSA _{Hupd} (m ² /g _{Pt})	$\begin{array}{c c} \text{Specific activity} \\ (mA/cm^2_{\text{ECSAIses}}) \\ at \ 0.90 \ V \end{array} \qquad \begin{array}{c} \text{ECSA}_{\text{CO}} \\ (m^2/g_{\text{Pl}}) \end{array}$		Specific activity (mA/cm ² _{ECSAco}) at 0.90 V	Mass activity (A/mg _{Pt}) at 0.80 at 0.85 at 0.90 V V V		
HP-Ag/Pt/C	12.15	66.5	0.659	94.1	0.466	7.097	2.030	0.438
Ag@Pt/C	12.15	54.3	0.135	53.2	0.138	0.731	0.283	0.073
Pt/C (JM)	12.15	65.3	0.226	74.5	0.198	1.667	0.587	0.148

Table S3 Surface Area and ORR Activities for HP-Ag/Pt/C, Ag@Pt/C and Pt/C (JM) Catalysts.

* calculated from the ratio of the charge in the hydrogen adsorption/desorption region after double layer correction to 210 μ C cm⁻² for the specific charge of monolayer adsorption of hydrogen. ^[1]

Table S4 Comparison of the mass and specific activities toward ORR of Pt-Ag systems from literature reprints and this work.

Catalyst	Electrolyte	Temperature (°C)	MA@0.85 V (A/mg _{Pt})	MA@0.90 V (A/mg _{Pt})	Ref.
Ag@Pt/C	0.1 M HClO ₄	RT	0.593	-	[2]
AgPd@Pt	0.1 M HClO ₄	30°C	-	0.148	[3]
Pt hollow	0.1 M HClO ₄	RT	-	0.332	[4]
HP-Ag/Pt	0.1 M HClO ₄	RT	2.030	0.438	This work

Table S5 Surface Area and ORR Activities for HP-Ag/Pt/C, Ag@Pt/C and Pt/C (JM) Catalysts after accelerated durability test.

Catalyst	Pt loading (µg/cm ²)	$ECSA_{Hupd}$ (m^2/g_{Pt})	Conser- vation rate (%)	Specific activity (mA/cm ² _{ECSAllope}) at 0.90 V	$ECSA_{CO}$ (m^2/g_{Pt})	Conser- vation rate (%)	Specific activity (mA/cm ² _{ECSAco}) at 0.90 V	Mass activity (A/mg _{Pt}) at 0.90 V
HP-Ag/Pt/C	12.15	51.5	77.5	0.640	69.6	74.0	0.473	0.330
Ag@Pt/C	12.15	25.9	47.7	0.116	27.1	50.9	0.107	0.030
Pt/C (JM)	12.15	34.7	53.2	0.193	37.2	49.9	0.180	0.067

Figure S7 XPS survey spectrum (a) and high-resolution Ag 3d spectra for Ag@Pt after accelerated durability test. The high-resolution Pt 4f spectra of fresh and after ADT Ag@Pt and Pt/C sample (c) and the TEM images of fresh and cycled Ag@Pt samples (d).

Table S6 Binding Energies[†], Chemical States, and Relative Intensities of Pt 4f XPS Peaks for Pt/C, Ag@Pt, HP-Ag/Pt and the Ag@Pt after accelerated durability test samples.

Material	Binding energy of Pt	Binding energy of Pt	Assigned chemical	Relative intensity (%)
	4f 7/2 (eV)	4f 5/2(eV)	state	
Pt/C	71.20	74.57	Pt(0)	59.17
	71.93	75.37	Pt(II)	40.83
Ag@Pt	70.73	74.14	Pt(0)	65.25
	71.71	75.50	Pt(II)	34.75
HP-Ag/Pt	71.04	74.43	Pt(0)	61.25
	72.08	75.53	Pt(II)	38.75
Ag@Pt after ADT	70.63	73.98	Pt(0)	62.28
	71.54	75.43	Pt(II)	34.32

† In reference to the XC-72R carbon powder.

Reference

[1] Y. Garsany, O. A. Baturina, K. E. Swider-Lyons and S. S. Kocha, Analytical

Chemistry 2010, 82, 6321.

[2] J. Cao, M. Guo, J. Wu, J. Xu, W. Wang, Z. Chen, Journal of Power Sources 2015,

277, 155.

[3] J. Yang, J. Yang, J. Y. Ying, ACS Nano 2012, 6, 9373.

[4] Z. Peng, J. Wu, H. Yang, Chemistry of Material 2010, 23, 1098.