Electronic Supplementary Information for

Monolithic-structured ternary hydroxides as freestanding bifunctional

electrocatalysts for overall water splitting

Xiaolin Zhu,^{a,b} Cheng Tang,^a Hao-Fan Wang,^a Bo-Quan Li,^a

Qiang Zhang,^{*,a} Chunyi Li,^b Chaohe Yang,^b and Fei Wei^a

- ^a Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- ^b State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China
- *Correspondence concerning this article should be addressed to Q. Zhang Email: zhang-qiang@mails.tsinghua.edu.cn

1. Supplementary Figures

Fig. S1 Morphology and structure characterizations of NiFe/NF electrode. (a,b) SEM images of the NiFe/NF electrode. (c) TEM image of the electrodeposited NiFe LDHs. (d) XRD pattern of NiFe LDHs.

Fig. S2 XRD patterns of NiCoFe LDH samples with different compositions prepared by hydrothermal method.

Fig. S3 (a) N_2 adsorption-desorption isotherms and BET specific surface areas of NiCoFe LDHs with different compositions. (b) OER activity respect to catalyst surface area in 0.10 M KOH electrolyte.

Fig. S4 Stability of $Ni_{2.5}Co_{0.5}Fe/NF$ electrodes for overall water splitting at an initial current density around 10 mA cm⁻².

2. Supplementary Tables

Table S1. Summary of OER performance of NiFe-based electrocatalysts in 0.10 M KOHelectrolyte.

Samples	η ₁₀ (mV)	Current density@400 mV overpotential (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Reference
Ni _{2.5} Co _{0.5} Fe/NF	275	62	105	
Ni ₂ CoFe/NF	310	55	82	This work
Ni ₃ Fe/NF	305	57	92	
NiFe-LDH/CNT	309	-	35	S 1
CQD/NiFe-LDH	305	-	35	S2
n-NiFe LDH/NGF	337	30	45	S3
NiFe LDH/oGSH	350	21	54	S4
m-NiFe/CNx	360	13	59	S5
3D NiFe-LDH	250	-	50	S6
O-NiCoFe-LDH	420	9	93	S7
a-Fe ₄₀ Ni ₆₀ O _x	-	6	34 ± 8	S8
Ni-Fe film [40% Fe]	420	-	40	S9

Sample	Relative amounts of different elements (at.%)				Atomic notic of NicCorFo
	Ni	Co	Fe	0	Atomic failo of NI.CO.Pe
Electrodeposited					
Ni ₃ Fe LDH	28.24	-	13.01	58.75	2.17: - :1.00
Ni _{2.5} Co _{0.5} Fe LDH	23.48	7.63	12.34	56.55	1.90:0.62:1.00
Hydrothermally synthesized					
Ni ₃ Fe LDH	29.55	-	11.29	59.16	2.62: - :1.00
Ni _{2.5} Co _{0.5} Fe LDH	25.28	5.94	11.88	56.90	2.13:0.50:1.00
Ni ₂ CoFe LDH	21.69	11.45	12.42	54.44	1.75:0.92:1.00
Ni _{1.5} Co _{1.5} Fe LDH	18.78	14.51	12.98	53.73	1.45:1.12:1.00

Table S2. Elemental compositions of various NiCoFe LDH samples as determined by EDS measurement.

Samples	Temperature (°C)	Tafel slope (mV dec ⁻¹)	Exchange current density J_0 (mA cm ⁻²)
Ni _{2.5} Co _{0.5} Fe LDH [21.0 kJ mol ⁻¹]	 11.5 15.9 20.1 25.1 30.1 35.0 40.3 44.9 50.0 	191 183 175 164 151 141 122 118 113	236 248 254 290 356 402 612 599 532
Ni ₃ Fe LDH [52.3 kJ mol ⁻¹]	11.7 15.0 20.1 25.5 30.0 35.2 40.3 45.3 50.3	246 239 217 191 165 139 123 109 100	112 107 128 176 284 516 730 981 1057

Table S3. OER activation energy correlating parameters of $Ni_{2.5}Co_{0.5}Fe$ LDH and Ni_3Fe LDH obtained at various temperatures in 0.10 M KOH solution.

Samples	Mass loading (mg cm ⁻²)	Voltage@10 mA $\text{cm}^{-2}(V)$	Reference
Ni _{2.5} Co _{0.5} Fe/NF	0.3	1.62	This work
NiFe LDH/NF	-	1.70	S10
Ni(OH) ₂ /NF	-	1.82	S10
NiFeO _x /CFP	1.6	1.55	S 11
Ni ₂ P/NF	5.0	1.63	S12
Ni ₅ P ₄ /Ni foil	3.5	1.70	S 13
Ni-P/Cu foam	5.0	1.68	S14
NiSe/NF	2.8	1.63	S15
Ni ₃ Se ₂ /Cu foam	3.0	1.65	S16
Co-P/Cu foil	2.6	1.64	S17
CoO _x @CN on NF	2.1	1.60	S18
CoMnO@CN on NF	2.0	1.50	S19
Co ₃ O ₄ NCs/CFP	0.35	1.91	S20

Table S4. Summary of overall water splitting performance of the recently reportedbifunctional electrocatalysts in 1.0 M KOH electrolyte.

3. Supplementary Movies

Movie S1. Overall water splitting at different cell voltages on a two-electrode configuration using $Ni_{2.5}Co_{0.5}Fe/NF$ for both OER and HER in 1.0 M KOH, indicating that plentiful O₂ and H₂ bubbles were released during water electrolysis.

4. Supplementary References

- M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei and
 H. Dai, J. Am. Chem. Soc., 2013, 135, 8452-8455.
- S2 D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu and Z. Kang, ACS Appl. Mater. Interfaces, 2014, 6, 7918-7925.
- S3 C. Tang, H. S. Wang, H. F. Wang, Q. Zhang, G. L. Tian, J. Q. Nie and F. Wei, Adv.
 Mater., 2015, 27, 4516-4522.
- S4 X. Zhu, C. Tang, H.-F. Wang, Q. Zhang, C. Yang and F. Wei, *J. Mater. Chem. A*, 2015, 3, 24540-24546.
- S. Ci, S. Mao, Y. Hou, S. Cui, H. Kim, R. Ren, Z. Wen and J. Chen, *J. Mater. Chem. A*, 2015, 3, 7986-7993.
- S6 Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, X. Sun and X. Duan, *Chem. Commun.*, 2014, **50**, 6479-6482.
- S7 L. Qian, Z. Lu, T. Xu, X. Wu, Y. Tian, Y. Li, Z. Huo, X. Sun and X. Duan, *Adv. Energy Mater.*, 2015, 5, 1500245.
- S8 R. D. Smith, M. S. Prévot, R. D. Fagan, S. Trudel and C. P. Berlinguette, J. Am. Chem. Soc., 2013, 135, 11580-11586.
- S9 M. W. Louie and A. T. Bell, J. Am. Chem. Soc., 2013, 135, 12329-12337.
- S10 J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D.
 Tilley, H. J. Fan and M. Grätzel, *Science*, 2014, 345, 1593-1596.
- S11 H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nat. Commun.*, 2015, 6, 7261.
- S12 L.-A. Stern, L. Feng, F. Song and X. Hu, *Energy Environ. Sci.*, 2015, **8**, 2347-2351.

- S13 M. Ledendecker, S. Krick Calderón, C. Papp, H. P. Steinrück, M. Antonietti and M. Shalom, Angew. Chem. Int. Ed., 2015, 54, 12361-12365.
- S14 Q. Liu, S. Gu and C. M. Li, J. Power Sources, 2015, 299, 342-346.
- S15 C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351-9355.
- S16 J. Shi, J. Hu, Y. Luo, X. Sun and A. M. Asiri, *Catal. Sci. Technol.*, 2015, 5, 4954-4958.
- S17 N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
- S18 H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
- S19 J. Li, Y. Wang, T. Zhou, H. Zhang, X. Sun, J. Tang, L. Zhang, A. M. Al-Enizi, Z. Yang and G. Zheng, J. Am. Chem. Soc., 2015, 137, 14305-14312.
- S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhu and H. Fu, *Chem. Commun.*, 2015, 51, 8066-8069.