Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI) MicroporousLiAlSiO₄ with high ionic conductivity working as coating material and water adsorbent for LiNi_{0.5}Mn_{1.5}O₄ cathode

J. C. Deng,^a Y. L. Xu,^{★b} L.Li,^a T. Y. Feng,^a L. Li^b

^aElectronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an, China

^bShaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an, China

* Corresponding author. No. 28, West Xianning Road, Xi'an 710049, China. Tel./fax: +86 29 82665161.

E-mail address: ylxuxjtu@mail.xjtu.edu.cn (Y. Xu).

Supplementary Information 1

Fig. S1 XRD patterns of LNM spinels coated with different amount of $LiAlSiO_4$ from 0 to 20wt%.

Supplementary Information 2

Fig. S2 HR-TEM image of the LAS-10 particles.

Supplementary Information 3

Fig. S3 Nitrogen adsorption-desorption isotherms of pure LiAlSiO₄, LAS-0 and LAS-3 powders.