Supporting Information

3D Fe₃O₄@Au@Ag Nanoflowers Assembled Magnetoplasmonic

Chains for in situ SERS Monitoring of Plasmon-assisted Catalytic

Reaction

Qianqian Ding^{a,b}, Hongjian Zhou^{a,*}, Haimin Zhang^a, Yunxia Zhang^a, Guozhong Wang^a, Huijun Zhao^{a,c,*}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P.R. China

^b Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China

^c Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, QLD 4222, Australia

*Corresponding author: <u>hjzhou@issp.ac.cn</u> (H. Zhou); <u>h.zhao@griffith.edu.au</u> (H. Zhao); Tel: 0086-55165591441; Fax: 0086-55165591434.

Fig. S1 (A) UV-Vis spectrum of Fe₃O₄@Au NPs; (B) magnetization curve of Fe₃O₄@Au NPs at room temperature; (C) UV-Vis spectrum of Fe₃O₄@Au@Ag NAMPCs; (D) XRD patterns of as-prepared Fe₃O₄@Au NPs and Fe₃O₄@Au@Ag NAMPCs; the TEM image (E) and HRTEM image (F) of Fe₃O₄@Au NPs; (G) EDAX spectrum of the Fe₃O₄@Au@Ag NAMPCs.

Fig. S2 SEM images of (A) MPNCs, (B) irregular Fe₃O₄@Au-Ag nanoparticles and (C) the Fe₃O₄@Au@Ag NAMPCs.

Fig. S3 (A) SERS spectra for the Fe₃O₄@Au@Ag NAMPCs probed with the various concentrations of R6G; B) Logarithmic plot of [R6G] versus SERS intensity together with linear fitting.

Fig. S4 Raman spectrum of 0.1M R6G (curve a) and SERS spectra of 10^{-10} M R6G (curve b) obtain from assembled Fe₃O₄@Au@Ag NAMPCs.

SERS substrate	Molecule	EF	Reference
α-Fe ₂ O ₃ @Au	4-ATP	3.1×10^{4}	Tang et al. ¹
Dimer-on-mirror	BPE	2.2×10 ¹¹	Hakonen et al. ²
Ag Cube Film	R6G	1011	Lee et al. ³
Ag Clusters	CV	1.6×10 ⁹	Chakraborty et al.4
CNT @Ag array	R6G	1010	Zhang et al. ⁵
gold nanorod@SiO2	Methylene blue	3×10^{10}	Seo et al. ⁶
Ni@Ag	R6G	1.525×10^{6}	Ding et al. ⁷
Fe ₃ O ₄ @Au nanorod	4-ATP	2.13×10 ⁵	Tang et al. ⁸
Fe ₃ O ₄ @Au@Ag NAMPCs	R6G	2.2×10 ⁹	Present study

Table S1 Reported ensemble averaged enhancement factors (EF) of SERS substrates

Fig. S5 Series of SERS spectra of CV molecules and its intensities of the main Raman vibrations collected from 20 different batches of Fe₃O₄@Au@Ag NAMPCs.

Notes and references

X. H. Tang, W. Y. Cai, L. B. Yang and J. H. Liu, Nanoscale, 2013, 5, 11193-11199.
A. Hakonen, M. Svedendahl, R. Ogier, Z. J. Yang, K. Lodewijks, R. Verre, T. Shegai, P. O. Andersson and M. Kall, Nanoscale, 2015, 7, 9405-9410.

3. H. K. Lee, Y. H. Lee, Q. Zhang, I. Y. Phang, J. M. R. Tan, Y. Cui and X. Y. Ling, ACS Appl. Mater. Interfaces, 2013, 5,11409–11418.

4. I. Chakraborty, S. Bag, U. Landman and T. Pradeep, J. Phys. Chem. Lett., 2013, 4, 2769–2773

5. J. Zhang, X. Zhang, C. Lai, H. Zhou and Y. Zhu, Opt. Express, 2014, 22, 21157–21166.

6. S. H. Seo, B. M. Kim, A. Joe, H. W. Han, X. Y. Chen, Z. Cheng and E. S. Jang, Biomaterials, 2014, 35, 3309–3318.

7. Q. Q. Ding, H.L.Liu, L. B. Yang and J. H. Liu, J Mater Chem, 2012, 22, 19932-19939.

8. X. H. Tang, R. L. Dong, L. B. Yang and J. H. Liu, J Raman Spectrosc. 2015, 46, 470-475