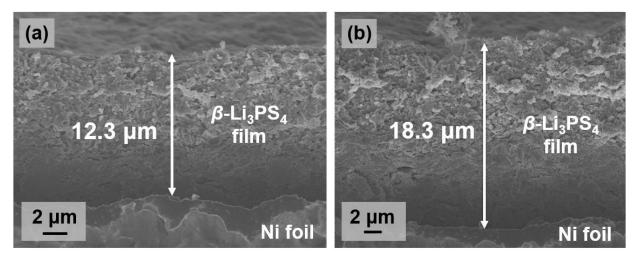
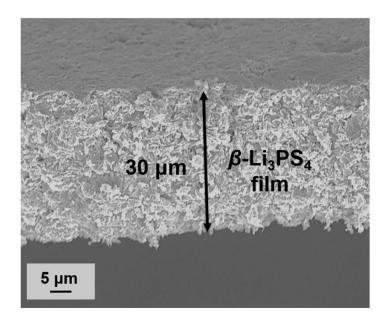
Supporting Information

Fabrication of Ultrathin Solid Electrolyte Membranes of β -Li₃PS₄ Nanoflakes by Evaporation-Induced Self-Assembly for All-Solid-State Batteries


Hui Wang, ^{1,*} Zachary D. Hood, ^{1,2} Younan Xia, ^{2,3,4} Chengdu Liang^{1,*}

¹ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA


² School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA

³Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA

⁴ School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Figure S1. SEM cross-sectional images of β -Li₃PS₄ thin membranes produced by EISA, which have a thickness of a) ~12 µm and b) ~ 18 µm.

Figure S2. SEM cross-sectional image of freestanding 30 μ m β -Li₃PS₄ membrane produced by EISA.