Supporting Information

High Performance Lithium-Sulfur Batteries with a Permselective

Sulfonated Acetylene Black Modified Separator

Fanglei Zeng,^a Zhaoqing Jin,^b Keguo Yuan,^b Shuai Liu,^{b,c} Xing Cheng,^{b,c} Anbang Wang,^{*b} Weikun Wang^{*b} and Yu-sheng Yang^b

a School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China

b Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China

*E-mail: wab_wang2000@126.com; wangweikun2002@126.com.

Figures S1 The AB-SO₃⁻ coated separator (a) before and (b) after cycling.

(b)

Figure S2 (a) Cycle performances and Coulombic efficiency of Li–S cell using the pristine Celgard separator at 1.5 C. (b) Charge-discharge curves of Li–S cell using the pristine Celgard separator at 1.5 C. (c) Cycle performances and Coulombic efficiency of Li–S cell using AB-SO₃- modified separator at 1.5 C.

Figure S3 The potentiostatic polarization curves of Li-S cell with Pristine Celgard separator and AB-SO₃⁻ modified separator.