Supporting materials for

Thermoelectric-Photoelectric Composite Nanocables Induced Larger Efficiency of Dye-Sensitized Solar Cells

Hongcai He,¹ Chuanbo Zhang,¹ Tao Liu,¹ Yonghai Cao,² Ning Wang^{1, *} and Zhanhu Guo^{2, *}

¹State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

²Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA 1. Seebeck coefficient and resistivity of NaCo₂O₄, TiO₂ and TiO₂-NaCo₂O₄ composite materials

NaCo₂O₄ powder, TiO₂ powder and TiO₂-NaCo₂O₄ composite nanocables were pressed and sintered at 900 °C for 4 h in air. The obtained samples were cut into bars of 2×2×11 mm³ for Seebeck coefficient (S) and electrical resistivity (ρ) measurements using a commercial system (ZEM-3, ADVANCE RIKO, Inc., Japan). Fig. S1 shows temperature dependence of resistivity (p) and Seebeck coefficient (S) of NaCo₂O₄, TiO₂ and TiO₂-NaCo₂O₄ composite materials. NaCo₂O₄ shows a low resistivity of about 1 m Ω cm (Fig. S1A(a)) and a positive Seebeck coefficient of about 108 μ V K⁻¹ (Fig. S1B(a)) at room temperature, implying that NaCo₂O₄ is a good p-type thermoelectric oxide. TiO₂ shows a high negative Seebeck coefficient of about -350 μ V K⁻¹ (Fig. S1B(b)) at room temperature to indicate that it is an n-type thermoelectric oxide, but its high resistivity of about 320 m Ω cm (Fig. S1A(b)) at room temperature weakens its thermoelectric performance. As a result, the temperature gradient effect in the DSSC with pure TiO₂ photoanode is suppressed so that there is no obvious difference among their J-V characteristics under different ΔT , Fig. 5C and 5D. Since the mass ratio of NaCo₂O₄ and TiO₂ in CNCs is about 1:4, that is, the mass percentage of NaCo₂O₄ in CNCs is only about 20%, the TiO₂-NaCo₂O₄ composite material exhibits similar Seebeck coefficient and resistivity to TiO₂, but its values of both Seebeck coefficient and resistivity are smaller than those of TiO₂, (Fig. S1B(c) and S1A(c)).

Fig. S1 Temperature dependence of (A) resistivity (ρ) and (B) Seebeck coefficient (S) of (a) NaCo₂O₄, (b) TiO₂ and (c) TiO₂-NaCo₂O₄ composite materials.

2. Microstructure of the composite photoanode film

In order to investigate the effect of TiO_2 -NaCo₂O₄ composite nanocables on the photovoltaic properties of solar cells, different contents of the prepared CNC powders were mixed with TiO_2 nanoparticles for hybrid pastes, and then the composite photoanode films were prepared by doctor-blade coating technique. The cross-sectional SEM image of the composite photoanode film with 10 wt% CNCs is shown in Fig. S2. It is observed in the photoanode that some CNCs are randomly scattered in the TiO_2 nanocrystalline particles with an average diameter of about 30 nm, and many TiO_2 nanocrystals are attached on the surface of the CNCs, consistent with the expected

design as shown in Fig. 1a. The CNCs have a much bigger size and smaller specific surface area than the TiO_2 nanocrystals, which is a possible factor to influence light scattering as well as the adsorption capacity of dye molecules.

Fig. S2 The cross-sectional SEM image of the composite photoanode film with 10 wt% CNCs.