Solid state synthesis, structural characterization and

ionic conductivity of bimetallic alkali-metal yttrium

borohydrides *M*Y(BH₄)₄ (*M* = Li and Na)

Elsa Roedern^{a)}*, Young-Su Lee^{b)}, Morten Brix Ley^{a)}, Kiho Park^{b)}, Young Whan Cho^{b)},

Jørgen Skibsted^{a)}, Torben René Jensen^{a)}*

- ^{a)} Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
- ^{b)} High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea

SUPPORTING INFORMATION

Contents

- Tables
 - **Table S1** Optimized unit cell parameters and energy with respect to the most stable Li@2*a* structure.
 - **Table S2** Experimental and DFT-optimized cell parameters and unit cell volume per formula unit (V/Z).
- Figures
 - Figure S1 Crystal structure of LiY(BH₄)₄, showing the considered Li positions
 - **Figure S2** Coordination polyhedra for the structure of $LiY(BH_4)_4$ in which Li ions are positioned at (a) 2a, (b) 2b, and (c) 2e Wyckoff sites
 - **Figure S3** Energy change upon displacing Na along *x* direction while other metal ions are frozen at the original positions.
 - **Figure S4** Volume per formula unit of $MY(BH_4)_4$ (M= Li, Na, K, Rb, Cs) compared to the added volume of $Y(BH_4)_3$ and MBH_4
 - Figure S5 Complex impedance spectra (Nyquist plot) of samples s1-6
 - **Figure S6** NaY(BH₄)₄ Frenkel defect generation.
 - **Figure S7** Vacancy hopping along the z-direction.
 - $_{\circ}$ Figure S8 ²³Na MAS NMR spectra (14.1 T, v_R = 8.0 kHz) of the central-transition region for NaY(BH₄)₄, following its thermal decomposition
 - ^o Figure S9 High resolution PXD and refinement of LiY(BH₄)₄

- Figure S10 High resolution PXD and refinement of NaY(BH₄)₄, space group Cmcm
- $_{\circ}$ Figure S11 High resolution PXD and refinement of NaY(BH₄)₄, space group C222₁
- 1.

Table S1 - Optimized unit cell parameters and energy with respect to the most stable Li@2*a* structure.

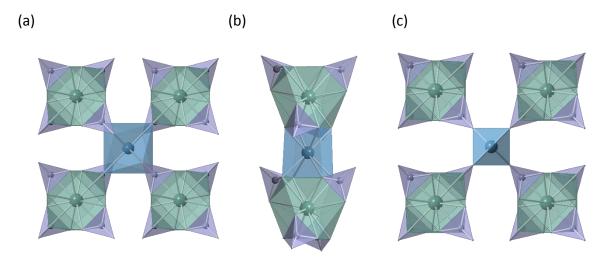
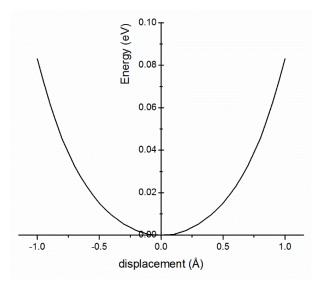
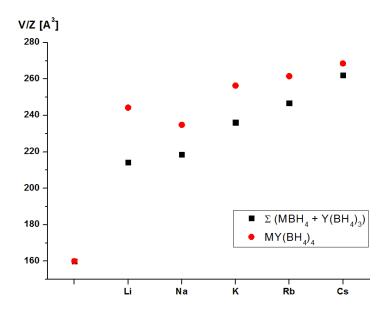
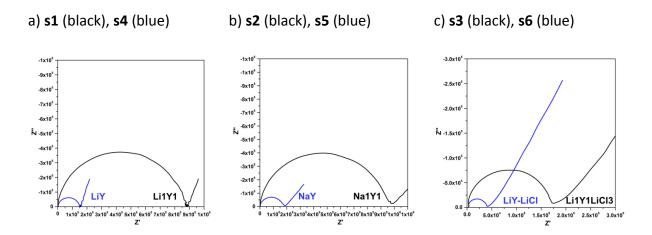
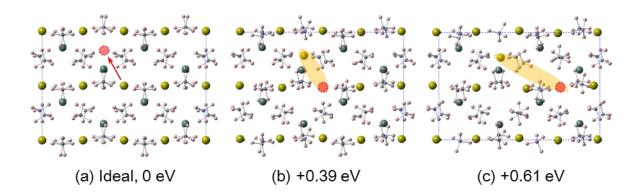

	a (Å)	<i>c</i> (Å)	Energy (eV/f.u.)
Exp.	6.236	12.491	
2 <i>a</i>	6.222	12.486	0.000
			(reference)
2b	6.461	12.538	0.348
2 <i>d</i>	6.464	12.539	0.348
2 <i>e</i>	6.338	12.617	0.412
2 <i>f</i>	6.332	12.954	0.350
I-4	6.553	12.476	-0.185

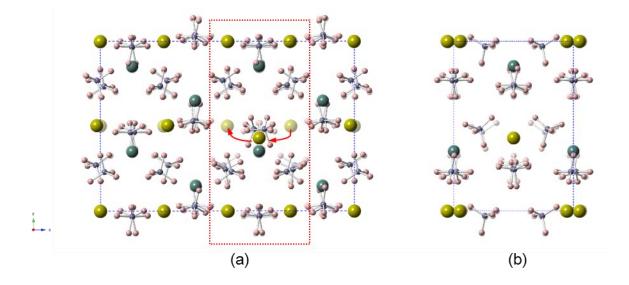
Table S2 - Experimental and DFT-optimized cell parameters and unit cell volume per formula unit (V/Z).

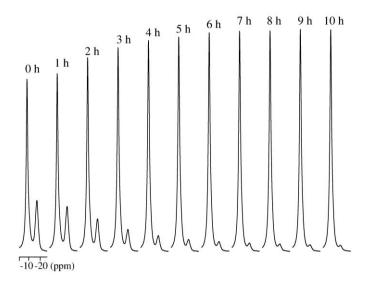

		a / Å	b / Å	c / Å	V/z / Å ³
Ехр		8.5260	12.1358	9.0526	234.2
Стст	PBE	8.506	12.415	9.334	246.4
	vdW-DF2	8.494	12.166	8.866	229.1
C222 ₁	PBE	9.819	12.149	9.730	290.2
	vdW-DF2	8.516	12.134	8.881	229.5

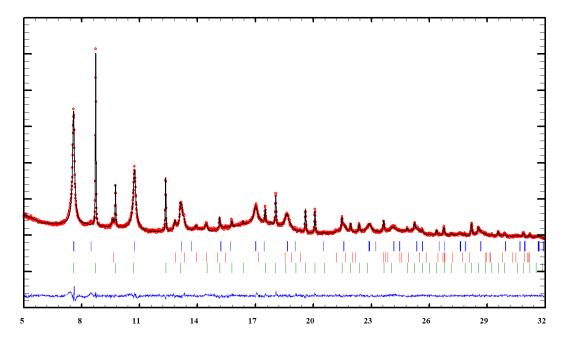

Figure S1 - Crystal structure of LiY(BH₄)₄, showing the considered Li positions: 2a in green, 2b in yellow, 2e in red, 4k in pale violet.

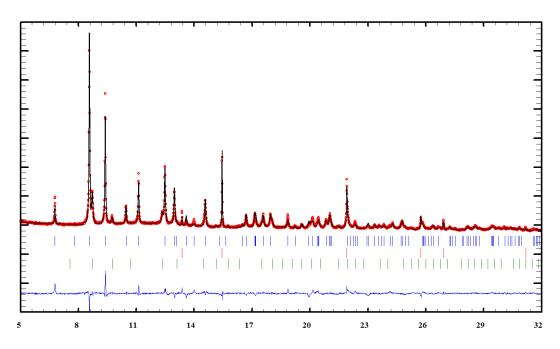

Figure S2 - Coordination polyhedra for the structure of $LiY(BH_4)_4$ in which Li ions are positioned at (a) 2a, (b) 2b, and (c) 2e Wyckoff sites; green : Y-H, violet: B-H, blue: Li-H.


Figure S3 - Energy change upon displacing Na along x direction while other metal ions are frozen at the original positions.


Figure S4 – Volume per formula unit of $MY(BH_4)_4$ (M= Li, Na, K, Rb, Cs) compared to the sum of unit cell volumes of $Y(BH_4)_3$ and MBH_4


Figure S5 – Complex impedance spectra (Nyquist plot) of samples a) $Y(BH_4)_3 - LiBH_4$ (1:1), b) $Y(BH_4)_3 - NaBH_4$ (1:1) and c) $YCI_3 - LiBH_4$ (1:4) before (black) and after quenching (blue).


Figure S6 - (a) $NaY(BH_4)_4$ in the ideal configuration. The red circle marks a possible interstitial cite and a Frenkel defect can be generated by the movement of Na ion as indicated by the red arrow. A vacancy-interstitial pair located (b) nearby and (c) apart.


Figure S7 - (a) Vacancy hopping along the z-direction. Na ion is at the saddle point. The view direction is [100]. (b) Cross section image at the saddle point. The view direction is [001]. In both (a) and (b), the background translucent image shows the ideal configuration.

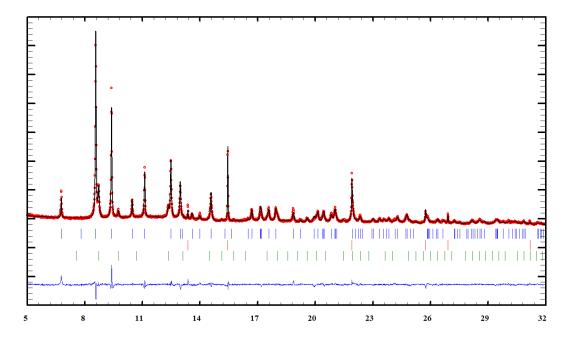

Figure S8. ²³Na MAS NMR spectra (14.1 T, $v_R = 8.0$ kHz) of the central-transition region for NaY(BH₄)₄, following its thermal decomposition from shortly after its synthesis by quenching to 10 h of isothermal decomposition in the spinning NMR rotor (T = 24 ± 2 °C). The acquisition time for each spectrum was 15 min and every fourth spectrum is shown. The time indicates the beginning of the data acquisition.

Figure S9 – High resolution PXD of LiY(BH₄)₄, obtained at room temperature, BLI11, Diamond, $\lambda = 0.825770$ Å, red circles: exp. data, black line: refined profile, blue line: difference pattern. Vertical dashes: reflexes of crystal phases: LiY(BH₄)₄ (top, R_{Bragg} = 5.3%), LiBH₄ (middle, R_{Bragg} = 1.5%), α -Y(BH₄)₃ (bottom, R_{Bragg} = 8.3%)

Figure S10 – High resolution PXD of NaY(BH₄)₄, obtained at room temperature, BLI11, Diamond, $\lambda = 0.825770$ Å, red circles: exp. data, black line: refined profile, blue line: difference pattern. Vertical dashes: reflexes of crystal phases: *C2221* - NaY(BH₄)₄ (top, R_{Bragg} = 8.7%), NaBH₄ (middle, R_{Bragg} = 10.4%), α -Y(BH₄)₃ (bottom, R_{Bragg} = 7.9%)

Figure S11 - High resolution PXD of NaY(BH₄)₄, obtained at room temperature, BLI11, Diamond, $\lambda = 0.825770$ Å, red circles: exp. data, black line: refined profile, blue line: difference pattern. Vertical dashes: reflexes of crystal phases: *Cmcm* - NaY(BH₄)₄ (top, R_{Bragg} = 7.7%), NaBH₄ (middle, R_{Bragg} = 12.3%), α -Y(BH₄)₃ (bottom, R_{Bragg} = 7.3%).