Self-generation of a quasi p-n junction for high efficiency chemical-

doping-free graphene/silicon solar cells using a transition metal

oxide interlayer

Dikai Xu^a, Xuegong Yu^a*, Dace Gao^a, Cheng Li^a, Mengyao Zhong^a, Haiyan Zhu^a, Shuai Yuan^a, Zhan Lin^b, Deren Yang^a

^{a.} State Key Lab of Silicon Materials and School of Materials Science and Engineering, Zhejiang

University, Hangzhou 310027, P. R. China.

^{b.} Institute of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang

University, Hangzhou, Zhejiang, 310027, China.

Supporting information

Figure S1. Work function of WO₃, Gr and n-Si measured by a Kelvin probe under ambient

conditions.

Figure S2. (a) Raman spectrum of monolayer Gr film measured on SiO₂/Si substrate and (b) light transmission spectrum of monolayer Gr film.

Figure S3. Schematic device structures of WO₃/Si solar cells (A), Gr/Si solar cells without (B) and with (C) a WO₃ interlayer.

Table S1. Summarized photovoltaic parameters of WO₃/Si solar cell (Device A), Gr/Si solar cells without (Device B) and with (Device C) a WO₃ interlayer.

Devices	$V_{\rm OC}({\rm mV})$	$J_{\rm SC}~({\rm mA/cm^2})$	FF (%)	PCE (%)
А	269.04	0.07	35.46	0.01
В	383.61	26.75	38.91	3.99
С	511.06	32.92	62.94	10.59

Device structures	V_{OC}	J_{SC}	FF	Pristine PCE	Doped PCE	Year
	(V)	(mA/cm^2)	(%)	(%)	(%)	
This work	0.51	32.9	63	10.59		2015
Gr/Si ¹	0.48	6.5	56	1.65		2010
Gr/Si ²	0.43	14.2	32	1.9	8.6	2012
Boron doped Gr/Si ³	0.53	18.8	23	2.3	3.4	2012
Gr/Si ⁴	0.43	16.2	39	2.66	5.47	2013
Gr/Si nanohole array ⁵	0.46	27.8	47	6.02	10.40	2013
Gr/Si ⁶	0.51	17.5	43	5.53		2013
Gr/P3HT/CH ₃ -Si nanowires ⁷	0.43	27.3	38	4.42	9.70	2013
Gr/Si ⁸	0.39	22.9	43	3.78	14.5	2013
Gr/GO/Si ⁹	0.45	26.6	52	6.18		2014
Gr/GO/Si ¹⁰	0.48	26.4	41	5.2	12.3	2014
Gr/MoS ₂ /Si ¹¹	0.50	28.1	47	6.56		2015
CNT/Gr/Si ¹²	0.54	22.7	57	7.97	14.88	2015
Gr/P3HT/ultrathin c-Si ¹³	0.54	22.9	41	5.06	8.26	2015
Gr/AgNWs/Al ₂ O ₃ /Si ¹⁴	0.53	29.2	56	8.68		2015
Crack-filled Gr with Au NP/Si ¹⁵	0.48	24.8	66	7.8	12.3	2015
TiO ₂ /Gr/SiO _x /Si ¹⁶					15.6	2015

Table S2. Selected representative results of Gr/Si solar cells before (including the photovoltaic

parameters) and after chemical doping.

Figure S4. Reflectance spectra of Si, WO3/Si, and Gr/WO3/Si solar cell (PMMA/Gr/WO3/Si).

Figure S5. PCE of a Gr/WO₃/Si solar cell exposed under ambient conditions.

Figure S6. Carrier density of Gr under ambient condition and covered by WO3 thin film measured

by Hall Effect.

Table S3. Performances degradation of $Gr/WO_3/Si$ solar cells after PMMA removing process. The annealing temperature to remove the PMMA coating should be larger than 400 °C, while a mild annealing (150 °C) has already reduced PCE to lower than 5%.

Post-treatment	$V_{OC} (\mathrm{mV})$	J_{SC} (mA/cm ²)	<i>FF</i> (%)	PCE (%)
Dipping in acetone	444.16	5.42	12.90	0.31
	438.25	10.30	14.69	0.66
	372.04	9.45	16.43	0.58
Annealing at 150 °C	431.89	32.40	34.23	4.79
	399.42	31.04	30.22	3.75
	416.16	32.52	31.00	4.19

References

- 1 X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Liand D. Wu, Adv. Mater., 2010, 22, 2743-8.
- 2 X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appletonand A. F. Hebard, *Nano Lett*, 2012, **12**, 2745-50.
- 3 X. Li, L. Fan, Z. Li, K. Wang, M. Zhong, J. Wei, D. Wuand H. Zhu, *Advanced Energy Materials*, 2012, 2, 425-429.
- 4 T. Cui, R. Lv, Z.-H. Huang, S. Chen, Z. Zhang, X. Gan, Y. Jia, X. Li, K. Wang, D. Wuand F. Kang, *J. Mater. Chem. A*, 2013, **1**, 5736.
- 5 C. Xie, X. J. Zhang, K. Q. Ruan, Z. B. Shao, S. S. Dhaliwal, L. Wang, Q. Zhang, X. W. Zhangand J. S. Jie, J. Mater. Chem. A, 2013, 1, 15348-15354.
- 6 X. Li, D. Xie, H. Park, M. Zhu, T. H. Zeng, K. Wang, J. Wei, D. Wu, J. Kongand H. Zhu, *Nanoscale*, 2013, 5, 1945-8.
- 7 C. Xie, X. Zhang, Y. Wu, X. Zhang, X. Zhang, Y. Wang, W. Zhang, P. Gao, Y. Hanand J. Jie, *J. Mater. Chem. A*, 2013, **1**, 8567.
- 8 E. Shi, H. Li, L. Yang, L. Zhang, Z. Li, P. Li, Y. Shang, S. Wu, X. Li, J. Wei, K. Wang, H. Zhu, D. Wu, Y. Fangand A. Cao, *Nano Lett*, 2013, 13, 1776-81.
- 9 L. Yang, X. Yu, M. Xu, H. Chenand D. Yang, J. Mater. Chem. A, 2014, 2, 16877-16883.
- 10 K. Jiao, X. Wang, Y. Wangand Y. Chen, Journal of Materials Chemistry C, 2014, 2, 7715.
- 11 K. Jiao, C. Duan, X. Wu, J. Chen, Y. Wangand Y. Chen, Phys. Chem. Chem. Phys., 2015, 17, 8182-6.
- 12 W. Xu, B. Deng, E. Shi, S. Wu, M. Zou, L. Yang, J. Wei, H. Pengand A. Cao, ACS Appl Mater Interfaces, 2015, 7, 17088-94.
- 13 K. Ruan, K. Ding, Y. Wang, S. Diao, Z. Shao, X. Zhangand J. Jie, J. Mater. Chem. A, 2015, 3, 14370-14377.
- 14 L. Yang, X. Yu, W. Hu, X. Wu, Y. Zhaoand D. Yang, ACS Appl Mater Interfaces, 2015, 7, 4135-41.
- 15 P. H. Ho, Y. T. Liou, C. H. Chuang, S. W. Lin, C. Y. Tseng, D. Y. Wang, C. C. Chen, W. Y. Hung, C. Y. Wenand C. W. Chen, *Adv. Mater.*, 2015, 27, 1724-9.
- 16 Y. Song, X. Li, C. Mackin, X. Zhang, W. Fang, T. Palacios, H. Zhuand J. Kong, *Nano Lett*, 2015, **15**, 2104-10.