# Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries

Hang Zhang,<sup>1</sup> Guanhua Zhang,<sup>2</sup> Zhiqin Li,<sup>2</sup> Ke Qu,<sup>3</sup> Lei Wang,<sup>2</sup> Wei Zeng,<sup>1</sup> Qingfeng Zhang<sup>2</sup> & Huigao Duan<sup>2,\*</sup>

1 College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China

2 School of Physics and Electronics, Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, P. R. China
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China

\* Corresponding author: E-mail: <u>duanhg@hnu.edu.cn</u>

## Content

**Fig. S1.** a) SEM image and b) high magnification SEM image of CuO NFs. c) SEM image and d) high magnification SEM image of C NFs.

#### Theoretical calculation of Cu in CuO/Cu/C NFs

**Fig. S2.** CV curves of a) CuO NFs and b) N-doped C NFs at a scanning rate of 0.1 mV s<sup>-1</sup> between 0.005 and 3 V.

Fig. S3. Cycling performance of CuO NFs at a current density of  $0.5 \text{ A g}^{-1}$ .

Fig. S4. Cycling performance of N-doped C NFs at a current density of 0.5 A g<sup>-1</sup>.

**Fig. S5.** SEM images of electrode materials after 80th rate testing. a) and b) CuO/Cu/C NFs; c) and d) pure CuO NFs.

Fig. S6. Rate performance of CuO/Cu/C, C, CuO NFs tested for comparison.

**Fig. S7.** Cycling performance of the CuO/Cu/C NFs, 2x-CuO/Cu/C NFs and 0.5x-CuO/Cu/C NFs electrodes at a current density of 0.5 A g<sup>-1</sup>.

**Fig. S8.** Cycling performance and Coulombic efficiency of CuO/Cu/C NFs at a constant current density of 0.1 A g<sup>-1</sup>.

**Fig. S9.** Cycling performance and Coulombic efficiency of CuO/Cu/C NFs at a constant current density of 0.2 A g<sup>-1</sup>.

**Fig. S10.** Photographs of a LED lighted by one coin cell prepared from CuO/Cu/C NFs electrode. a) Off-state; b) on-state; c) durable light in daylight; d) bright yellow light in darkness.

**Fig. S11.** a) SEM image and b) high magnification SEM image of flexible CuO/Cu/C NFs electrode before 100 cycles; c) SEM image and d) high magnification SEM image of flexible CuO/Cu/C NFs electrode after 100 cycles.

Fig. S12. Nyquist plots for CuO/Cu/C NFs, bare C NFs and pure CuO NFs.

**Table S1.** Comparison of the electrochemical properties of CuO/Cu/C NFs with recently reported carbon-based nanostructures and CuO/C composites anode materials for LIBs.



**Fig. S1.** a) SEM image and b) high magnification SEM image of CuO NFs. c) SEM image and d) high magnification SEM image of C NFs.

### Theoretical calculation of Cu in CuO/Cu/C NFs

As Cu element comes from copper acetate monohydrate, carbon is derived from pyrolysis of PAN with high carbon yields (about 70%<sup>1</sup>). The percentage content of Cu element is calculated as follows:

$$m_{Cu} = n_{Cu(CH_3COO)_2 \cdot H_2O} \times M_{Cu} = \frac{m_{Cu(CH_3COO)_2 \cdot H_2O}}{M_{Cu(CH_3COO)_2 \cdot H_2O}} \times M_{Cu}$$
(1)

$$=\frac{0.28 g}{199.65 g \cdot mol^{-1}} \times 63.55 g \cdot mol^{-1} = 0.089 g$$

$$m_{\mathcal{C}} = m_{PAN} \times 70\% \tag{2}$$

$$= 0.8 \ g \times 70\% = 0.560 \ g$$

$$W_{Cu}\% = \frac{m_{Cu}}{m_{Cu} + m_{C}} \times 100\%$$

$$= \frac{0.089 \ g}{0.089 \ g + 0.560 \ g} \times 100\% \approx 13.7\%$$
(3)



Fig. S2. CV curves of a) CuO NFs and b) N-doped C NFs at a scanning rate of 0.1  $mV s^{-1}$  between 0.005 and 3 V.



Fig. S3. Cycling performance of CuO NFs at a current density of  $0.5 \text{ A g}^{-1}$ .



Fig. S4. Cycling performance of N-doped C NFs at a current density of 0.5 A g<sup>-1</sup>.



**Fig. S5.** SEM images of electrode materials after 80th rate testing. a) and b) CuO/Cu/C NFs; c) and d) pure CuO NFs.



Fig. S6. Rate performance of CuO/Cu/C, C, CuO NFs tested for comparison.



**Fig. S7.** Cycling performance of the CuO/Cu/C NFs, 2x-CuO/Cu/C NFs and 0.5x-CuO/Cu/C NFs electrodes at a current density of 0.5 A g<sup>-1</sup>.



Fig. S8. Cycling performance and Coulombic efficiency of CuO/Cu/C NFs at a constant current density of  $0.1 \text{ A g}^{-1}$ .



Fig. S9. Cycling performance and Coulombic efficiency of CuO/Cu/C NFs at a constant current density of  $0.2 \text{ A g}^{-1}$ .



**Fig. S10.** Photographs of a LED lighted by one coin cell prepared from CuO/Cu/C NFs electrode. a) Off-state; b) on-state; c) durable light in daylight; d) bright yellow light in darkness.



**Fig. S11.** a) SEM image and b) high magnification SEM image of flexible CuO/Cu/C NFs electrode before 100 cycles; c) SEM image and d) high magnification SEM image of flexible CuO/Cu/C NFs electrode after 100 cycles.



Fig. S12. Nyquist plots for CuO/Cu/C NFs, bare C NFs and pure CuO NFs.

**Table S1.** Comparison of the electrochemical properties of CuO/Cu/C NFs with recently reported carbon-based nanostructures and CuO/C composites anode materials for LIBs.

| Sample                                                     | Current density                                | Cycles     | Capacity                                           | Ref. |
|------------------------------------------------------------|------------------------------------------------|------------|----------------------------------------------------|------|
| Nanographene-constructed                                   | 0.2 C/0.074 A g <sup>-1</sup>                  | 30         | 600 mAh g <sup>-1</sup>                            | 2    |
| hollow carbon spheres                                      |                                                |            |                                                    |      |
| Vertically aligned carbon<br>Nanotubes/graphene paper      | 0.03 A g <sup>-1</sup>                         | 40         | 290 mAh g <sup>-1</sup>                            | 3    |
| Graphene nanosheets-carbon nanotubes composite             | 0.2 C/0.074 A g <sup>-1</sup>                  | 30         | 518 mAh g <sup>-1</sup>                            | 4    |
| Nitrogen-doped carbon nanotubes                            | 0.1 A g <sup>-1</sup>                          | 100        | 397 mAh g <sup>-1</sup>                            | 5    |
| Graphene-multiwalled carbon nanotubes hybrid nanostructure | 0.09 A g <sup>-1</sup>                         | 100        | 768 mAh g <sup>-1</sup>                            | 6    |
| Graphene-carbon nanotube                                   | 0.5 C/0.372 A g <sup>-1</sup>                  | 100        | 429 mAh g <sup>-1</sup>                            | 7    |
| hybrid materials                                           | 1 C/0.744 A g <sup>-1</sup>                    | 100        | 330 mAh g <sup>-1</sup>                            |      |
| ·                                                          |                                                |            | -                                                  |      |
| Folded structured graphene paper                           | 0.1 A g <sup>-1</sup>                          | 100        | 568 mAh g <sup>-1</sup>                            | 8    |
| Nitrogen-doped graphene                                    | 0.1 A g <sup>-1</sup>                          | 80         | 460 mAh g <sup>-1</sup>                            | 9    |
| Two-dimensional mesoporous                                 | 0.2 A g <sup>-1</sup>                          | 10         | 540 mAh g <sup>-1</sup>                            | 10   |
| graphene                                                   | 0.5 A g <sup>-1</sup>                          | 10         | 430 mAh g <sup>-1</sup>                            |      |
|                                                            | 1 A g <sup>-1</sup>                            | 10         | 370 mAh g <sup>-1</sup>                            |      |
| Vertically aligned Graphitic carbon nanosheets             | 0.5 A g <sup>-1</sup>                          | 680        | 648 mAh g <sup>-1</sup>                            | 11   |
| Nitrogen-doped double-shelled<br>hollow carbon spheres     | 1.5 C/0.558 A g <sup>-1</sup>                  | 500        | 512 mAh g <sup>-1</sup>                            | 12   |
| Hierarchical porous carbon microspheres                    | 0.05 A g <sup>-1</sup>                         | 70         | 480 mAh g <sup>-1</sup>                            | 13   |
| Core-shell structured porous carbon-graphene composites    | 0.1 A g <sup>-1</sup><br>0.1 A g <sup>-1</sup> | 100<br>100 | 680 mAh g <sup>-1</sup><br>620 mAh g <sup>-1</sup> | 14   |

| N-doped herringbone carbon<br>nanofibers               | 0.5 C/0.186 A g <sup>-1</sup> | 110 | >300 mAh g <sup>-1</sup>  | 15       |
|--------------------------------------------------------|-------------------------------|-----|---------------------------|----------|
| Hard carbon/graphene                                   | 0.4 A g <sup>-1</sup>         | 500 | 205 mAh g <sup>-1</sup>   | 16       |
| CuO/C microspheres                                     | 0.1 A g <sup>-1</sup>         | 50  | 440 mAh g <sup>-1</sup>   | 17       |
| CuO/CNT nanocomposites                                 | 0.1 C/0.067 A g <sup>-1</sup> | 100 | 650 mAh g <sup>-1</sup>   | 18       |
| Core-shell CuO/polypyrrole<br>nanocomposites           | 0.2 A g <sup>-1</sup>         | 80  | 613 mAh g <sup>-1</sup>   | 19       |
| CuO nanosheets/r-GO paper                              | 0.067 A g <sup>-1</sup>       | 50  | 736.8 mAh g <sup>-1</sup> | 20       |
| CuO/GNS nanocomposite                                  | 0.1 A g <sup>-1</sup>         | 60  | 650 mAh g <sup>-1</sup>   | 21       |
| CuO/graphene nanocomposite                             | 0.2 C/0.122 A g <sup>-1</sup> | 30  | 500 mAh g <sup>-1</sup>   | 22       |
| Porous CuO/C submicron spheres                         | 0.2 C/0.134 A g <sup>-1</sup> | 100 | 681 mAh g <sup>-1</sup>   | 23       |
| N-GO/CuO nanocomposite                                 | 0.372 A g <sup>-1</sup>       | 100 | 472 mAh g <sup>-1</sup>   | 24       |
| CuO nanorods/graphene<br>nanocomposites                | 0.1 C/0.067 A g <sup>-1</sup> | 50  | 692.5 mAh g <sup>-1</sup> | 25       |
| CuO-Cu <sub>2</sub> O/graphene composite               | 0.2 A g <sup>-1</sup>         | 60  | 487 mAh g <sup>-1</sup>   | 26       |
| Nanoleaf-on-sheet CuO/graphene<br>composites           | 0.1 A g <sup>-1</sup>         | 50  | 600 mAh g <sup>-1</sup>   | 27       |
| CuO-graphene hybrids                                   | 0.2 A g <sup>-1</sup>         | 120 | 532 mAh g <sup>-1</sup>   | 28       |
| Nanoporous CuO/Cu composite                            | 0.5 A g <sup>-1</sup>         | 200 | 600 mAh g <sup>-1</sup>   | 29       |
| Hierarchical branching<br>Cu@Cu <sub>2</sub> O@CuO NWs | 0.1 A g <sup>-1</sup>         | 50  | 345 mAh g <sup>-1</sup>   | 30       |
| Ultra-uniform CuO/Cu/C                                 | 0.1 A g <sup>-1</sup>         | 100 | 714.5 mAh g <sup>-1</sup> | Our work |
| composites                                             | 0.2 A g <sup>-1</sup>         | 100 | 610.4 mAh g <sup>-1</sup> |          |
| -                                                      | 0.5 A g <sup>-1</sup>         | 500 | 572.0 mAh g <sup>-1</sup> |          |
|                                                        | 1 A g <sup>-1</sup>           | 400 | 441.9 mAh g <sup>-1</sup> |          |
| CuO/Cu/C NFs paper                                     | 0.1 A g <sup>-1</sup>         | 100 | 569.4 mAh g <sup>-1</sup> |          |

#### References

- 1 M. Wu, Q. Wang, K. Li, Y. Wu and H. Liu, *Polym. Degrad. Stabil.*, 2012, **97**, 1511-1519.
- 2 S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier and K. Mullen, *Adv. Mater.*, 2010, **22**, 838-842.
- 3 S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu and H.-M. Cheng, *Adv. Energy Mater.*, 2011, **1**, 486-490.
- 4 S. Chen, P. Chen and Y. Wang, *Nanoscale*, 2011, **3**, 4323-4329.
- 5 X. Li, J. Liu, Y. Zhang, Y. Li, H. Liu, X. Meng, J. Yang, D. Geng, D. Wang, R. Li and X. Sun, *J. Power Sources*, 2012, **197**, 238-245.
- 6 B.P. Vinayan, R. Nagar, V. Raman, N. Rajalakshmi, K.S. Dhathathreyan and S. Ramaprabhu, J. *Mater. Chem.*, 2012, **22**, 9949.
- 7 S. Chen, W. Yeoh, Q. Liu and G. Wang, *Carbon*, 2012, **50**, 4557-4565.
- 8 F. Liu, S. Song, D. Xue and H. Zhang, *Adv. Mater.*, 2012, **24**, 1089-1094.
- 9 C. Zhang, N. Mahmood, H. Yin, F. Liu and Y. Hou, Adv. Mater., 2013, 25, 4932-4937.
- 10 Y. Fang, Y. Lv, R. Che, H. Wu, X. Zhang, D. Gu, G. Zheng and D. Zhao, *J. Am. Chem. Soc.*, 2013, **135**, 1524-1530.
- J. Zhu, K. Sakaushi, G. Clavel, M. Shalom, M. Antonietti and T.P. Fellinger, *J. Am. Chem. Soc.*, 2015, 137, 5480-5485.
- 12 K. Zhang, X. Li, J. Liang, Y. Zhu, L. Hu, Q. Cheng, C. Guo, N. Lin and Y. Qian, *Electrochim. Acta*, 2015, **155**, 174-182.
- 13 F. Wang, R. Song, H. Song, X. Chen, J. Zhou, Z. Ma, M. Li and Q. Lei, *Carbon*, 2015, **81**, 314-321.
- 14 R. Guo, L. Zhao and W. Yue, *Electrochim. Acta*, 2015, **152**, 338-344.
- 15 X.-B. Cheng, Q. Zhang, H.-F. Wang, G.-L. Tian, J.-Q. Huang, H.-J. Peng, M.-Q. Zhao and F. Wei, *Catal. Today*, 2015, **249**, 244-251.
- 16 X. Zhang, S. Han, P. Xiao, C. Fan and W. Zhang, *Carbon*, 2016, **100**, 600-607.
- 17 X.H. Huang, C.B. Wang, S.Y. Zhang and F. Zhou, *Electrochim. Acta*, 2011, **56**, 6752-6756.
- 18 S. Ko, J.-I. Lee, H.S. Yang, S. Park and U. Jeong, Adv. Mater., 2012, 24, 4451-4456.
- 19 Z. Yin, Y. Ding, Q. Zheng and L. Guan, *Electrochem. Commun.*, 2012, **20**, 40-43.
- 20 Y. Liu, W. Wang, L. Gu, Y. Wang, Y. Ying, Y. Mao, L. Sun and X. Peng, *ACS appl. Mater. Interfaces*, 2013, **5**, 9850-9855.
- 21 D. Qiu, B. Zhao, Z. Lin, L. Pu, L. Pan and Y. Shi, *Mater. Lett.*, 2013, **105**, 242-245.
- 22 S.-D. Seo, D.-H. Lee, J.-C. Kim, G.-H. Lee and D.-W. Kim, Ceram. Int., 2013, 39, 1749-1755.
- 23 H. Kim, H.-S. Lim, Y.-J. Kim, Y.-K. Sun and K.-D. Suh, *RSC Adv.*, 2014, 4, 60573-60580.
- 24 Y. Pan, K. Ye, D. Cao, Y. Li, Y. Dong, T. Niu, W. Zeng and G. Wang, *RSC Adv.*, 2014, **4**, 64756-64762.
- 25 Q. Wang, J. Zhao, W. Shan, X. Xia, L. Xing and X. Xue, J. Alloys Compd., 2014, 590, 424-427.
- 26 X. Zhou, J. Shi, Y. Liu, Q. Su, J. Zhang and G. Du, J. Alloys Compd., 2014, 615, 390-394.
- 27 X. Zhou, J. Zhang, Q. Su, J. Shi, Y. Liu and G. Du, *Electrochim. Acta*, 2014, **125**, 615-621.
- 28 W. Zhou, F. Zhang, S. Liu, J. Wang, X. Du, D. Yin and L. Wang, *RSC Adv.*, 2014, 4, 51362-51365.
- 29 X. Xu, M. Han, J. Ma, C. Zhang and G. Li, RSC Adv., 2015, 5, 71760-71764.
- 30 Y. Zhao, Y. Zhang, H. Zhao, X. Li, Y. Li, L. Wen, Z. Yan and Z. Huo, *Nano Res.*, 2015, **8**, 2763-2776.